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Abstract
Trace gases in the atmosphere  (NO2: nitrogen dioxide;  SO2: sulfur dioxide) have a major impact on both local and global air 
quality, human health, climate and ecological conditions. Therefore, the present study investigated 16 years (2005– 2020) of 
Ozone Monitoring Instrument (OMI) based  NO2 and  SO2 in Dobson unit (DU) spatiotemporal distributions and variability, 
 SO2/NO2 ratio, trends, and potential source contribution function (PSCF) across ocean and land areas of Jiangsu Province, 
China. Results demonstrated higher  NO2 and  SO2 concentrations (DU) over land  (NO2: 0.58 and  SO2: 0.56) than in the 
ocean  (NO2: 0.30 and  SO2: 0.38) due to more concentrated anthropogenic activities on land surfaces. There were significant 
seasonal variations in  NO2 and  SO2, with winter being the highest and summer being the lowest. The  SO2/NO2 ratio shows 
land and ocean pollution is caused by  NO2 and  SO2 emissions from ships and industrial processes. Furthermore, OMI-based 
trace gases and anthropogenic emissions showed a good correlation  (NO2 vs  NOx = 0.626 and  SO2 vs  SO2 emission = 0.871) 
across land surfaces than the ocean  (NO2 vs  NOx = 0.366).  NO2 and  SO2 levels over land surfaces decreased significantly (at 
a 95% confidence level) compared to the ocean on annual and seasonal scales, which is attributed to a decrease in  NOx and 
 SO2 emissions. Furthermore, PSCF analysis shows that local sources have a greater impact on air quality than long-distance 
sources over land and ocean. It is concluded from this study that Chinese air pollution control policies achieved a satisfac-
tory improvement in Jiangsu's air quality by reducing  NO2 and  SO2. It is therefore recommended to continue or extend these 
policies in the future to improve China’s air quality, which will benefits its citizens.
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1 Introduction

Numerous environmental problems, such as air pollution, 
have arisen from China’s fast industrialization, socioeco-
nomic development, urbanization, and meteorological fac-
tors (Chan and Yao 2008; de Leeuw et al. 2021; Wei et al. 
2023). Aerosol and gaseous pollutants (e.g., aerosol optical 
depth: AOD, particulate matters, Ozone, nitrogen dioxide: 
 NO2, sulfur dioxide:  SO2) are the leading causes of air pol-
lution (Wang et al. 2021b). Two atmospheric trace gases, 
 NO2 and  SO2, play a significant role in chemical reactions. 
For example, by reacting with hydroxyl radicals (OH),  NO2 

produces aerosols and acid rain through an oxidizing pro-
cess in the atmosphere, which are dangerous to both the 
atmospheric environment (reducing vegetation and forest, 
corroding buildings, and contributing to heating worldwide) 
and health problems (asthma, colds, coughs, flu, bronchitis, 
and cancer) (Lelieveld et al. 2002; Lelieveld and Dentener 
2000; Seinfeld and Pandis 2006). Both anthropogenic activi-
ties (e.g., burning of fossil fuel and biomass, electric- and 
coal-based power plants) and natural sources (volcanoes, 
oceans, biological decay, and lightning) produce the emis-
sion of nitrogen oxides  (NOx) (Lee et al. 1997). Among Chi-
na’s NO2 emissions in 2010, 39% came from industry, 32% 
from power plants, 25% from traffic, and 4% from residential 
activities (Li et al. 2017a, b). Furthermore,  SO2 contributes 
to producing sulfate aerosols and acid rain, which negatively 
affect human health (e.g., breathing problems for asthmatic 
children and adults, cardiovascular or chronic lung disease) 
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(Miller 2005), as well as the atmospheric environment (cli-
mate and building corrosion) (Hutchinson and Whitby 1977; 
Pope and Dockery 2006).  SO2 comes from a variety of natu-
ral (e.g., volcanoes, fires, and phytoplankton) and anthropo-
genic sources (e.g., burning of high-sulfur coals and heating 
oils in power plants, industrial boilers, and metal smelting) 
(Jain et al. 2016).  NO2 and  SO2 emissions from ships also 
adversely affect coastal and inland air quality (within a hun-
dred kilometers of the emission sources) (Lv et al. 2018). 
In addition, the effects of  NO2 and  SO2 on air quality, the 
climate, human health, terrestrial acidification, and marine 
ecosystems (Berglen 2004; Seinfeld and Pandis 2006).

Carey et al. (2013) reported that long-term exposure to 
 NO2 and  SO2 could increase mortality rates. Long-term 
exposure to  NO2 is also accountable for the significant 
increase in China's respiratory and cardiovascular mortality 
rates (Dong et al. 2012; Tao et al. 2012). To account for the 
effects of  NO2 and  SO2 on human health and the atmos-
pheric environment, several researchers around the globe 
have investigated the characteristics of these two gaseous 
pollutants using both ground and satellite observations (Bilal 
et al. 2021; Hilboll et al. 2013; Krotkov et al. 2016; Lin and 
McElroy 2011; Zhang et al. 2017a, b; Zheng et al. 2018a, b).

Ground-based observations stations can present accu-
rate and reliable scenarios of gaseous pollutants, providing 
details of their temporal distributions and their consequences 
on the climate and human health (Zhang et al. 2017a, b; 
Zheng et al. 2018a, b). However, the ground-based stations 
are unevenly and sparsely distributed and thus can fail to 
identify  NO2 and  SO2 pollution hotspots at fine spatial scales 
(Wang et al. 2021b). Satellite-based observations provide 
near-real-time (NRT) long-term data of gaseous pollutants 
(e.g.,  NO2 and  SO2) with global coverage at different spa-
tial resolutions and thus, can overcome the limitations of 
ground-based measurements. In addition, satellite-based 
observations allow long-distance  NO2 and  SO2 transporta-
tion assessment (Lu et al. 2013; Wang et al. 2011) and iden-
tify contributions from different sources (Zhang et al. 2008). 
Several satellite-based sensors, namely the Global Ozone 
Monitoring Experiment (GOME) instrument (Burrows et al. 
1999; Eisinger and Burrows 1998), the Scanning Imaging 
Absorption spectrometer for Atmospheric CHartographY 
(SCIAMACHY) (Bovensmann et al. 1999), GOME-2 (Cal-
lies et al. 2004; Munro et al. 2016), the Ozone Monitoring 
Instrument (OMI) (Levelt et al. 2006a, b), and the TROPO-
spheric Monitoring Instrument (TROPOMI) (Veefkind et al. 
2012), have been built and launched to acquire accurate evi-
dence about atmospheric gaseous pollutants. However, OMI, 
in particular, provides long-term observations of the atmos-
pheric gaseous pollutants at high spatial (13 × 24 km, at 
nadir) with daily global coverage (Krotkov et al. 2016; Lev-
elt et al. 2018). OMI-based measurements have been widely 
used for monitoring air quality by detecting aerosols,  NO2, 

 SO2, and formaldehyde (HCHO) and detecting Ozone (O3), 
volcanic emission, and solar radiation. Globally, OMI-based 
 NO2 showed a good correlation (r = 0.80–0.90) with ground-
based measurements (Celarier et al. 2008). A study over the 
United States also reported a good correlation between satel-
lite (GOME and OMI) and ground-based  NO2 measurements 
(Penn and Holloway 2020). Consequently, many research-
ers have used satellite observations worldwide to investigate 
 NO2 and  SO2 pollution. For example, Krotkov et al. (2016) 
investigated changes in OMI-based  NO2 and  SO2 pollution 
over the United States, Asia, and Europe from 2005 to 2015 
and reported decreasing and increasing trends in  NO2 and 
 SO2. Jion et al. (2023) reported increasing trends in NO2 and 
SO2 pollution across Asian countries due to the excess burn-
ing of biomass and fossil fuel, and power plants. In addi-
tion, Lamsal et al. (2015) evaluated the trends in OMI-based 
tropospheric  NO2 vertical column density (VCD) against 
ground-based measurements over the United States. ul-Haq 
et al. (2015) studied the spatiotemporal distributions and 
variations of OMI-based  NO2 and its trend from 2004 to 
2015 over South Asian countries. Bilal et al. (2021) have 
characterized polluted cities of Pakistan based on long-term 
(2004–2019)  NO2 and  SO2 observations from OMI.

Some previous studies also validated and analyzed spati-
otemporal distributions and trends of OMI-based  NO2 and 
 SO2 over mainland China (Cui et al. 2016; Li et al. 2017a, b; 
Li et al. 2010; Liu et al. 2017, 2016; van der A et al. 2017; 
Wang et al. 2021b, 2017; Wei et al. 2023; Zhai et al. 2023; 
Zhang et al. 2017a, b; Zheng et al. 2018a, b). However, none 
of them attempted to analyze spatiotemporal distributions 
and variability of OMI-based  NO2 and  SO2 with their trends 
over the ocean. Only a single study has investigated  NO2, 
 SO2, and HCHO over the East China Sea using ship-based 
MAX-DOAS and satellite observations (OMI and Ozone 
Mapping and Profiler Suite (OMPS)) (Tan et al. 2018). Gen-
erally, in marine environments, the concentrations of trace 
gases are very low because no emission sources exist there, 
except for some maritime transport and natural sources. 
Schreier et al. (2015) reported low  NO2 VCD (< 0.5 ×  1015 
molec/cm2) in the marine environment of the South China 
and Sulu seas. In addition, they found boundary layer val-
ues of  NO2 less than 100 pptv and 30 pptv in the open and 
clean tropical marine environment of the South China and 
Sulu seas, respectively. The time-series magnitudes of  SO2 
concentrations were consistent with  NO2 in these areas. 
Takashima et al. (2012) also reported low  NO2 concentra-
tions (~ 0.2 ppbv) over the western Pacific and Indian oceans. 
However, concentrations of these pollutants were high close 
to the shore due to the operations of busy ports and vessels 
(Schreier et al. 2015; Takashima et al. 2012). These pollut-
ants significantly affect local and regional air pollution in 
both inland and offshore areas of the Yangtze River Delta 
(YRD) region (Fan et al. 2016; Zhang et al. 2017a, b). In 
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recent years they have also affected the ecology and envi-
ronment of the continental YRD region, including the coast 
and land areas of Jiangsu province (Chen et al. 2017; Song 
et al. 2017). Therefore, it is crucial to identify  NO2 and  SO2 
pollution hotspots and sources over both the ocean and land 
regions of Jiangsu Province. This is the first study to identify 
the pollution hotspots using long-term (2005–2020) OMI-
based  NO2 and  SO2 data and their sources over the ocean 
and land in Jiangsu province, China. The present study is 
designed based on the following three main objectives: (1) 
to analyze long-term spatiotemporal distributions and vari-
ations of OMI-based  NO2 and  SO2, their ratio, and trends, 
(2) to measure the contributions of anthropogenic emis-
sions  (NOx and  SO2) to total  NO2 and  SO2 concentration 
changes, and (3) to identify the potential source areas using 
PSCF analysis. This study provides a better understanding 
of local emission sources over the land and ocean surfaces of 
Jiangsu, China as a result of the interaction with atmospheric 
gaseous pollutants in the atmosphere.

2  Study Area

The land and ocean parts of Jiangsu Province cover between 
30° 5′–35° N and 116° 5′–126° 3′ E (Fig. 1). Jiangsu Prov-
ince is an economically developed province in eastern 
China, having dense metropolises and large rural areas. Crop 
residue burning, high traffic volumes, industrial production, 
and urban construction activities in the province cause sig-
nificant air pollution (Wang et al. 2021a). The province is 

between the YRD and the Beijing-Tianjin-Hebei (BTH) 
regions, where air pollution frequently occurs. The coastal 
waters of the YRD regions (e.g., Jiangsu, Shanghai, and 
Zhejiang) are the busiest sea area of the East China Sea 
(ECS), known as the three key Ship Emission Control Zones 
(ECZs) of China (see Fig. 1). In addition, the continental 
YRD region is a developed industrial city cluster of China 
or even the world. More than 15 large ports exist in the YRD 
coastal port cluster, with a flourishing shipping industry that 
releases  SO2,  NO2, and  PM2.5 in the atmosphere.

3  Materials and Methods

3.1  OMI Data

The OMI, a near-polar orbiting sensor of the Aura satel-
lite, crosses the equator at 13:45 (local time), hovering over 
705 km from the earth’s surface. It was deployed on 15th 
2004 July by NASA with the cooperation of Finland, the 
United Kingdom, and the Netherlands. This sensor uses 
250–500 nm wavelengths to measure the reflected solar 
radiation daily at a spatial resolution of 13 × 25 km at the 
nadir. OMI UV spectral measurements utilize several algo-
rithms to retrieve total and tropospheric column densities 
of trace gases such as  NO2 and  SO2 (Krotkov et al. 2016; 
Carn et al. 2017). In the present study, OMI version 3 (V3) 
level-3 (L3) daily total column  NO2 (OMNO2d; cloud-
screened: cloud fraction < 30%) and  SO2 (cloud radiance 

Fig. 1  Map of the study area, including China's ocean and land 
(Jiangsu Province) surface. The background image reveals the multi-
year (2005–2020) averages of MODIS NDVI, with arid surfaces 
(NDVI < 0.2), lighter or sparse vegetation (0.2 < NDVI < 0.4), moder-
ate vegetation (0.4 < NDVI < 0.5), and dark vegetation (NDVI > 0.5). 

Sea boundary is taken from Glaciology and Geocryology Data 
Center, National Earth System Science Data Sharing Infrastruc-
ture, National Science & Technology Infrastructure of China (http:// 
westdc. geoda ta. cn/ index. htm

http://westdc.geodata.cn/index.htm
http://westdc.geodata.cn/index.htm
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fraction < 0.2, OMSO2e) products with a spatial resolution 
of 0.25° × 0.25° were used.

Furthemore, OMI-based  NOx and  SO2 emissions were 
used in this study to clearly understand anthropogenic 
emission scenarios. This study obtained a satellite-based 
NOx emission dataset from the DECSO (Daily Emission 
Constrained by Satellite Observations) algorithm. DECSO 
algorithm was developed to estimate  NOx emissions with a 
spatial resolution of 0.25° × 0.25° over East Asia, West Asia, 
South Africa, and India (Mijling and van der A, 2012). This 
algorithm has been significantly upgraded and validated over 
South Asia (Ding et al. 2018, 2017b, 2017a). The tropo-
spheric  NO2 column-integrated values were calculated from 
OMI-based  NO2 concentrations using the QA4ECV algo-
rithm (quality assurance for the essential climate variables) 
(Boersma et al. 2018) and then used as input to the DECSO 
algorithm for estimating  NOx emissions. More details can 
be found in Mijling and van der A (2012) and Ding et al. 
(2017b). Furthermore,  SO2 emissions were estimated by 
combining OMI-based measurements with the Multi-res-
olution Emissions Inventory for China (MEIC) inventory. 
More details can be found in Theys et al. (2015) and van der 
A et al. (2017). Anthropogenic  NOx and  SO2 emissions data 
are accessible through the TEMIS (Tropospheric Emission 
Monitoring Internet Service) portal.

3.2  Methodology for  NO2 and  SO2

Several methods were applied to detect  NO2 and  SO2 pollu-
tion hotspots and identify their potential sources over ocean 
and land territories:

• An analysis of long-term annual and seasonal averages 
for the OMI-based total columns of  NO2 and  SO2 was 
conducted over the entire study area. Furthermore, the 
shapefile was used to extract area averages for Jiangsu 
Province's coastal and land areas for seasonal and annual 
analysis.

• A frequency distribution was used to visualize the vari-
ability (lows and highs) of  NO2 and  SO2 concentrations 
over land and ocean surfaces in Jiangsu Province, China.

• A  SO2/NO2 ratio was used in order to identify the 
sources of air pollutants over land and ocean, regardless 
of whether they originated from mobile sources (traffic 
emissions) or from point sources (industrial activities). 
A high value of the  SO2/NO2 ratio (> 0.60) indicates 
significant contributions from industrial activities over 
land (Wang et al. 2021b), while the  SO2/NO2 ratio > 1.5 
reflects the emission of high-sulfur fuel content from 
ships across the ocean (Cheng et al. 2019b).

• The Mann-Kendal (MK) test (Kendall 1975; Mann 1945) 
(Mann 1945; Kendall 1975), associated with the Theil-
Sen's slope (Sen 1968; Theil 1992), was used to calculate 

trends of  NO2 and  SO2 across ocean and land territories 
for the period of 2005–2020. The significance of  NO2 
and  SO2 trends was calculated using a two-tailed test at 
a 95% confidence level. More details about the methods 
can be found in Wang et al. (2021a, b).

• The NOAA (National Oceanic and Atmospheric Admin-
istration) HYSPLIT (Hybrid Single-Particle Lagrangian 
Integrated Trajectory) model (Stein et al. 2015) was 
used to calculate the source of air masses (Fleming et al. 
2012). This is a complete chemical transformation, dis-
persion, and transport model. The NOAA HYSPLIT 
model was combined with PSCF to detect the potential 
sources of  NO2 and  SO2 concentrations that influence 
the air quality of ocean and land territories in China. The 
MeteoInfo TrajStat and HYSPLIT (Wang et al. 2009) 
were used to compute back trajectories and identify 
sources of  NO2 and  SO2 concentrations across China. 
This method was also used in recently published papers 
in China and Asian countries (Ali et al. 2023; Bilal et al. 
2021; Wang et al. 2021b). 72-h back trajectories at 500 m 
above ground level were computed for every hour at sea-
sonal scales from 2005 to 2020 using meteorological data 
from GDAS (the Global Data Assimilation System) with 
a spatial resolution of 1° × 1°. The PSCF analysis used 
OMI-based daily  NO2 and  SO2 concentrations over a grid 
with a resolution of 0.5°. The PSCF value was calculated 
based on the assumption that the trajectory endpoint is 
located within a grid cell (i, j), and the trajectory was 
assumed to collect pollutants emitted from different 
pocket emission sources within that cell (i, j). The PSCF 
value can be explained as a conditional probability that 
defines the potential contributions of a grid cell to the 
high  NO2 and  SO2 loadings at the receptor sites. The 
value of PSCF for the  ijth grid cell is calculated based on 
the following Eq. (2):

where  nij is the number of endpoints that fall or pass through 
the ijth cell, and  mij defines the number of endpoints in the 
ijth cell having a concentration higher than an arbitrarily set 
criterion of the 75 percentile. For  NO2 and  SO2, the thresh-
olds were 0.498 (DU) and 0.577 (DU), respectively. To 
reduce the uncertainty of PSCF which resulted from small 
 nij, an arbitrary weight function (Wi,j) is multiplied into the 
PSCF (Eq. 2):

(1)PSCF =
mij

nij

(2)Wi,j =

⎧
⎪
⎨
⎪
⎩

ifnij > 3n → 1.00

if1.5n < nij ≤ 3n → 0.70

if n < nij ≤ 1.5n → 0.42

ifnij ≤ n → 0.15
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here, n = average number of endpoints, which is calcu-
lated for each cell that has at least one endpoint. Hence, the 
Weighted PSCF (WPSCF) is computed using Eq. (3):

4  Results and Discussion

4.1  Spatial Distributions of OMI NO2 and SO2

The annual and seasonal spatial distributions of OMI  NO2 
and  SO2 across ocean and land surfaces of Jiangsu Province 
during 2005–2020 (Fig. 2). The results show higher seasonal 
and annual of  NO2 and  SO2 across land compared to ocean 
surfaces (Fig. 2). In particular, the spatial distributions of 
mean yearly  NO2 and  SO2 were higher (> 0.40 DU) over 
the northern (Xuzhou, Suqian, and Lianyuang) and southern 
(Changzhou, Nanjing, Suzhou, Wuxi, and Zhenjiang) cities 
of Jiangsu province than ocean surfaces (≤ 0.40 DU). More-
over, the 16-year area average  NO2 and  SO2 were compara-
tively high over land (0.58 ± 0.06 for  NO2 and 0.56 ± 0.11 for 
 SO2) than over ocean (0.30 ± 0.03 for  NO2; 0.38 ± 0.06 for 
 SO2) (Table 1). The higher  NO2 and  SO2 over land could be 
attributed to anthropogenic activities, as reported by Wang 
et al. 2021b. In contrast, relatively low concentrations over 
the ocean are due to fewer emission sources on ocean sur-
faces (Tan et al. 2018). Several studies reported that ships 
also contribute to  NO2 and  SO2 in marine environments 
(Corbett et al. 1999; Endresen 2003; Eyring et al. 2010; 
Matthias et al. 2010). Cheng et al. (2019a) reported that 
the Ship Emission Control Zones of China (ECZ) in the 
Pearl River Delta (PRD), the Yangtse River Delta (YRD), 
and the Bohai Rim (Beijing–Tianjin–Hebei) are the primary 
source of  NO2 and  SO2 concentrations. Therefore, the East-
ern and Southern China seas are hotspots of  NO2 and  SO2 
concentrations (Johansson et al. 2017). The pollution level 
in the marine environment is higher near the coastal areas 
due to busy ports and ship lanes and lower in remote oceanic 
regions due to less maritime traffic (Eyring et al. 2010; Fan 
et al. 2016). Lamsal et al. (2013) reported that dense popula-
tion and unsustainable anthropogenic emissions from mobile 
sources (e.g., traffic emissions) also contribute to high  NO2 
pollution over land. Increased emissions of  SO2 over the 
northern cities of Jiangsu Province are mainly attributed to 
significant local activities (Dahiya and Myllyvirta 2019). 
According to Jion et al. (2023), the burning of biomass and 
fossil fuel, power plants, and heavy traffic in China have 
resulted in higher levels of  NO2 and  SO2 pollution.

Significant seasonal variations in  NO2 and  SO2 concen-
trations were observed across land and ocean (Fig. 2 and 
Table 1). For example, the 16-year area-averaged  NO2 and 

(3)WPSCF = Wi,j × PSCF(i, j)

 SO2 were comparatively high in winter over land surfaces 
(0.83 ± 0.12 for  NO2 and 0.75 ± 0.16 for  SO2) than the 
ocean (0.44 ± 0.08 for  NO2; 0.50 ± 0.09 for  SO2) (Fig. 2 and 
Table 1). This is attributed mainly to stable meteorological 
conditions, weak photochemical conversion, and coal burn-
ing for winter room heating (Qi et al. 2012; Zhang et al. 
2017a, b). In winter, the stable atmospheric conditions and 
low boundary layer height accumulate and slow down the 
 NO2 washing-out process in the atmosphere, resulting in 
high  NO2 in the total column (Bilal et al. 2021; Mhawish 
et al. 2020; Qi et al. 2012; Zhang et al. 2017a, b). In spring, 
the  NO2 (0.56 ± 0.08) and  SO2 (0.60 ± 0.15) were the 
second-highest over land than the ocean (0.29 ± 0.03 for 
 NO2; 0.44 ± 0.09 for  SO2) (Table 1). In summer, the  NO2 
and  SO2 were lowest both over land  (NO2 = 0.34 ± 0.02; 
 SO2 = 0.33 ± 0.06) and ocean (0.20 ± 0.01 and 0.23 ± 0.03), 
which is attributed to the plenty of precipitation, rapid pho-
tochemical conversion, and better atmospheric diffusion 
(Feng et al. 2001; Qi et al. 2012). Higher  NO2 and  SO2 
(0.58 ± 0.05 and 0.54 ± 0.14) over land surface compared 
to the ocean (0.25 ± 0.03 for  NO2; 0.34 ± 0.05 for  SO2) 
were also noticed in autumn (Table 1). High  NO2 and  SO2 
in winter were also reported by several studies conducted 
over China (Meng et al. 2010; Wang et al. 2021b; Xue et al. 
2020; Zhang et al. 2017a, b; Zheng et al. 2018a, b; Zheng 
et al. 2014).

4.2  Frequency Distributions of OMI  NO2 and  SO2

The annual and seasonal frequency distributions of daily 
OMI  NO2 and  SO2 over ocean and land for 2005– 2020 
(Fig. 3). The occurrence frequency of  NO2 and  SO2 were 
calculated for each 0.15 (DU) interval (Fig. 3). At annual 
timescale, the  NO2 and  SO2 occurrence frequencies 
over the ocean were highest for the 0.15– 0.30 bin (e.g., 
 NO2 = 65.70% and  SO2 = 36.65%). On the other hand, 
the highest  NO2 and  SO2 occurrence frequencies over 
land were observed for 0.30– 0.45 bin  (NO2 = 32.12% and 
 SO2 = 21.82%) (Fig. 3). The occurrence of high  NO2 (> 0.45 
DU) was higher over land than over ocean (Occurrence fre-
quency: land ~ 52%; ocean ~ 12%). Similarly, the occurrence 
of high  SO2 (> 0.45 DU) was also higher over land (53%) 
than over the ocean (25%). A previous study also reported 
that the land surfaces of Jiangsu Province are affected mainly 
by moderate (0.30– 0.45 DU)  NO2 and  SO2 pollution (Wang 
et al. 2021b). Notably, very high  NO2 and  SO2 pollution 
(bin > 0.60) also affect both land  (NO2 = 33%;  SO2 = 34%) 
and ocean  (NO2 = 7%;  SO2 = 12%) surfaces (Fig. 3). The 
ship traffic density and atmospheric dispersion are the main 
drivers of  SO2 and  NO2 variations over ocean surfaces 
(Cheng et al. 2019b). Furthermore, the  NO2 and  SO2 occur-
rence frequencies display a marked seasonal cycle (Fig. 3). 
Seasonally, the winter  NO2 and  SO2 occurrence frequencies 
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Fig. 2  Annual and spatial distribution of OMI-based  NO2 (DU) and  SO2 (DU) over ocean and land areas of Jiangsu Province, China, averaged 
for the period 2005 to 2020 [N defines the number of valid pixels]
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were highest at 0.60– 0.75 bin, which is mainly attributed to 
more emission from heating, weak photochemical conver-
sion, and atmospheric mixing (Qi et al. 2012). Over ocean 
surfaces, the  NO2 occurrence frequencies of 0.15– 0.30 bin 
were highest in all seasons, while the  SO2 occurrence fre-
quencies of 0.15– 0.30 bin were highest in autumn and sum-
mer and the 0.30– 0.45 bin in winter and spring (Fig. 3). This 
indicates that a moderate level of  SO2 pollution across ocean 
surfaces in winter and spring is mainly transported from 
land surfaces. Recent studies also reported that the winter 
and spring  SO2 pollution over ocean surfaces (including the 
Yellow Sea) primarily comes from Eastern China (Jeon et al. 
2021, 2018).

4.3  OMI  SO2/  NO2 ratio

The  SO2/NO2 ratio was used to detect the sources of air pol-
lutants over land, whether from mobile sources (traffic emis-
sions) or point sources (industrial activities) (Abdul Halim 
et al. 2018; Aneja et al. 2001; Nirel and Dayan 2001; Wang 
et al. 2021b) and over the ocean from ship emissions (Cheng 
et al. 2019a; Zhou et al. 2019). The results show significant 
annual and seasonal variations in  SO2/NO2 ratio over land 
and ocean (Fig. 4). Annually, the  SO2/NO2 ratio over land 
varied from 1.28 to 1.36 during 2005– 2008, indicating more 
 SO2 emissions than  NO2 from point sources. Over the ocean, 
the  SO2/NO2 ratio ranged from 1.52 to 1.71 during the same 
period, indicating the emission of high-sulfur fuel content 
from Ships. Afterward, the ratio gradually drops from 2009 
both over land  (SO2/NO2: 0.76– 0.96) and ocean  (SO2/NO2: 
1.02– 1.24). The installation of the fuel gas desulfurization 
(FGD) device in the industry in 2007 (Zhang et al. 2017a, b) 
may reduce  SO2 emissions over land (Wang et al. 2021b). In 
addition, the International Maritime Organization  and the 
Chinese Ministry of Transport (MOT) set up three domestic 
ship emission control areas in China (the Pearl River Delta: 
PRD, YRD, and the Bohai Rim: Beijing-Tianjin-Hebei area) 
where ship fuels were restricted to have a sulfur content of 
less than or equal to 0.50% (mass-by-mass) (MOT 2015). 
The 16-year area-averaged annual mean  SO2/NO2 ratio was 
1.27 across the ocean surface, reflecting emissions from 
ships using fuel with lower sulfur content. However, the ratio 
was 0.97 over land surfaces, indicating comparatively lower 
 SO2 emissions than  NO2 from point sources (e.g., industries) 

Table 1  Annual and seasonal mean  NO2 and  SO2 (± STD), obtained 
from OMI for the period 2005– 2020 over ocean and land surfaces 
(Jiangsu Province)

Trace gas Ocean Land

Annual NO2 0.30 ± 0.03 0.58 ± 0.06
SO2 0.38 ± 0.06 0.56 ± 0.11

Winter NO2 0.44 ± 0.08 0.83 ± 0.12
SO2 0.50 ± 0.09 0.75 ± 0.16

Spring NO2 0.29 ± 0.03 0.56 ± 0.08
SO2 0.44 ± 0.09 0.60 ± 0.15

Summer NO2 0.20 ± 0.01 0.34 ± 0.02
SO2 0.23 ± 0.03 0.33 ± 0.06

Autumn NO2 0.25 ± 0.03 0.58 ± 0.05
SO2 0.34 ± 0.05 0.54 ± 0.14

Fig. 3  Annual and seasonal 
frequency distributions of OMI-
based  NO2 and  SO2 (DU) over 
ocean and land areas of Jiangsu 
Province, China, for the period 
2005– 2020
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(Table S1). Seasonally, high sulfur content emissions from 
ships were found in spring  (SO2/NO2: 1.50) over the ocean 
surface, and lower sulfur content emissions from ships 
were prominent in summer (1.11) than in winter (1.18) and 
autumn (1.36). Over land, the  SO2/NO2 ratio (1.06) in spring 
indicates that  SO2 emission was comparatively high than 
 NO2, while  SO2 emission was lower than  NO2 (Table S1) 
in summer (0.96), autumn (0.93), and winter (0.92) seasons 
(Table S1). These results signify that  NO2 and  SO2 emis-
sions from point sources (industrial activities and ships) are 
responsible for polluting land and ocean surfaces. Recent 
studies reported that Ships have significant contributions to 
polluting land and ocean environments (Moldanová et al. 
2022; Schwarzkopf et al. 2022; Zhai et al. 2023).

4.4  Spatio‑Temporal Scenarios of Anthropogenic 
 NOx and  SO2 Emissions

Trace gases are those gases (e.g., carbon monoxide: CO, 
carbon dioxide:  CO2, Methane:  CH4, formaldehyde: HCHO, 
nitrogen species:  NOx, nitrous oxide:  NO2, sulfur dioxide: 
 SO2, and Ozone:  O3) that exist in the atmosphere which 
comes from biogenic processes, oceanic and anthropogenic 
emissions, and volcanoes, while anthropogenic emissions 
describe the gases and particles which comes from various 
sources (e.g., point sources and mobile sources). This sec-
tion used the emission datasets to study the spatial and tem-
poral distribution of  NOx and  SO2 emissions (Fig. 5). The 
spatial distributions of annual mean  NOx  (NOx =  NO2 + NO; 
2007– 2018) and  SO2 (2005– 2014) emissions (unit: Giga 
gram or Gg) were higher over land than over the ocean 
(Fig. 5). The higher  NOx and  SO2 emissions in northern 
(Xuzhou, Suqian, and Lianyuang) and southern (Changzhou, 

Nanjing, Suzhou, Wuxi, and Zhenjiang) cities of Jiangsu 
Province was consistent with OMI-based  NO2 and  SO2 
measurements (Fig. 2). In particular, the area-averaged 
annual mean  NOx and  SO2 emissions were relatively high 
across the land (2.31 ± 0.20 for  NOx and 9.18 ± 1.57 for 
 SO2) in comparison with the ocean (0.43 ± 0.15 for  NOx) 
(Fig. 5), which can be attributed mainly to the higher level 
of anthropogenic activity over land. Furthermore, good 
correlation coefficients were found between OMI  NO2 and 
 NOx emission (r = 0.626) and OMI  SO2 vs.  SO2 emission 
(r = 0.871) over land surfaces. While lower correlation coef-
ficient (r = 0.366) was found between OMI-NO2 and  NOx 
emission over the ocean (Fig. 6). Previous studies reported 
that industrial anthropogenic activities are the major causes 
of higher  NOx and  SO2 emissions in China (Zheng et al. 
2018a, b).

4.5  Trends of Satellite‑Based and Emission‑Based 
 NO2 and  SO2

The OMI  NO2 and  SO2 trends were calculated to assess 
annual and seasonal changes in  NO2 and  SO2 over land 
and ocean. Trends were calculated for 2005– 2020 and 
2006– 2010, when China announced strict air pollution con-
trol policies during the 11th Five Year Plan (FYP) period, 
2011– 2015 (during the 12th FYP), and 2013– 2017 (Action 
Plan of Air Pollution Prevention and Control: APPC-AC), 
as shown in Figs. 7,  8 and Table S2. The black dots (.) rep-
resents significant trends at a 95% confidence level. A clear 
spatial contrast in  NO2 and  SO2 trends was noticed during 
the study periods (Figs. 7 and 8). Notably, stronger decreas-
ing trends in  NO2 and  SO2 concentrations were evident 
over land than over the ocean at annual and seasonal scales 

Fig. 4  Annual and seasonal variations of  SO2/NO2 ratio obtained from OMI sensor for 2005– 2020
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(Fig. 9 and Table S2). In particular, insignificant decreasing 
trends in annual  NO2 concentrations over land were higher 
in 2011–2015 (− 0.033/year) than in 2013–2017 (− 0.018/
year), whereas the decreasing trends over the ocean were 
higher in 2011–2015 (− 0.014/year) than in 2013–2017 
(− 0.001/year) (Fig. 9). In contrast, significant increasing 
trends in  NO2 were observed during the 11th Five Year Plan 
(FYP) period over land (2006–2010 = 0.023/year) and ocean 
(0.018/year). The stronger positive trends in 2006– 2010 rel-
ative to the negative trends in 2011– 2015 and 2013– 2017 
over the ocean led to an overall insignificant increasing 
trend in  NO2 (DU/year) in 2005– 2020 (0.0004/year). The 
reverse scenarios were observed over land, leading to an 
insignificant decreasing trend in 2005– 2020 (0.0004/year) 
(Fig. 9). Furthermore, significant decreasing trends in annual 
 SO2 were observed during 2005– 2020 over land (− 0.023/
year), which was higher than the ocean (− 0.011/year) 
(Fig. 9). Seasonally, significant decreasing trends in  NO2 
and  SO2 (DU) were more prominent in 2005– 2020 for all 
seasons than during other periods. Besides, the magnitudes 
of decreasing trends were higher over land than the ocean 
(Table S2). Several possible factors are responsible for the 
increasing and decreasing trends in  NO2 and  SO2 over land 

and ocean. For example, desulfurization projects in coal-
fired power plants were implemented during the 11th Five 
Year Plan (FYP) period (2006– 2010) and continued for the 
12th FYP period (2011– 2015) and APPC-AC (2013– 207) 
(Li et al. 2017a, b; Ma et al. 2019), which overall led to 
decreasing trends in  SO2 over land. In contrast, the absence 
of any control policies for reducing  NO2 emission during the 
11th Five Year Plan (FYP) period (2006–2010) (Ma et al. 
2019) allowed increased  NO2 concentrations during that 
period (see Figs. 7 and 9). A previous study also reported 
a significant reduction in  CO2,  NO2, and  SO2 emissions 
across China due to installing the combined cycle technol-
ogy in industrial and coal-fired power plants (de Gouw et al. 
2014). Implementing the ship emission control policy by 
the MOT in 2015 may also reduce  SO2 emissions over the 
ocean (MOT 2015).

Trends in  NOx and  SO2 emissions were calculated to 
measure the relative contributions of anthropogenic  NOx 
(Gg N/Cell/year) and  SO2 (Gg  SO2/Cell/year) emissions to 
OMI  NO2 and  SO2 changes. A large spatial contrast in  NOx 
and  SO2 trends was observed during the study periods over 
the ocean and Jiangsu Province's land (Figs. S1,  S2). A 

Fig. 5  Spatial distributions of 
mean  NOx (2007– 2018) and 
 SO2 (2005– 2014) emissions, 
estimated from OMI sensor, 
over China's ocean and land ter-
ritories [Gg is for Giga gram]
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stronger positive trend in anthropogenic  NOx emission in 
2007– 2010 (0.114/year) than in 2013– 2017 (0.036/year) 
or 2011– 2015 (0.015/year) led to an overall significant 
increasing trend in 2007– 2018 (0.032/year) over ocean. 
The positive trend signifies no significant control measure-
ments of anthropogenic  NOx emission over ocean. Ships 
emit about 5– 7 ×  109 kg/year of  NOx and 4.7– 6.5 ×  109 kg/
year of  SO2 into the atmosphere (Healy et al. 2009) and 
contribute to reducing air quality in both coastal and port 
cities (Andersson et al. 2009; Corbett et al. 1999; Endresen 
2003). However, implementing China's strict air pollution 
control policies in high emitting sectors (e.g., industry, 
transport, and power plants) reduced anthropogenic  NOx 
and  SO2 emissions over land during the study periods (Fig. 
S2). This finding aligns with Zheng et al. (2018a, b) study. 
Overall, this study indicates that Chinese air pollution con-
trol policies contributed to improved air quality in Jiangsu 
by reducing  NO2 and  SO2. Therefore, these policies should 
be continued or extended in the future in order to improve 

Chinese air quality, which will benefit the lives of citizens 
in the long run.

4.6  Potential Source Contribution Function (PSCF) 
analysis

The previous study reported that the air quality over land 
(i.e., Jiangsu Province) is significantly impacted more 
by local pollution than by distant regional sources (Fig. 
S3) (Wang et al. 2021b). In contrast, many industries 
are located in the land of Jiangsu province, especially in 
its southern cities, which may collectively contribute to 
forming high concentrations of  NO2 and  SO2 over those 
areas (Song et al. 2019). Therefore, PSCF analysis was 
conducted only over ocean for 2005– 2020, using 72-h 
back trajectories attained from the NOAA HYSPLIT 
model and OMI data to detect the potential source areas 
of  NO2 and  SO2 pollutants. The HYSPLIT-derived 
back-trajectories from seven locations over ocean (see 
Table S3) were used to compute a single PSCF for each 

Fig. 6  The annual variability of OMI  NO2 and  SO2 emissions  (NOx and  SO2) over China's ocean and land surfaces
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air pollutant and show the major likely sources of pollu-
tion at those seven locations. PSCF analyses are grouped 
by season (Fig. 10). Significant seasonal variation in 
 SO2 and  NO2 sources was observed over the ocean. The 

high values of PSCF (> 0.50) in winter indicate that the 
potential source areas of  NO2 and  SO2 are located in 
different parts of mainland China (e.g., Anhui, Beijing, 
Henan, Hubei, Inner Mongolia, Jiangsu, Jiangxi, Shanxi, 

Fig. 7  Spatial distribution of annual and seasonal trends in OMI-based  NO2 concentrations. The black dot (.) indicates significance at a 95% 
confidence interval
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Shaanxi, Shandong, Tianjin, and Zhejiang). These local 
sources affect the air quality of ocean more significantly 
than the more distant regional sources (e.g., Mongolia) 
(Fig. 10). In spring, local sources (i.e., Anhui, Beijing, 
Henan, Hubei, Inner Mongolia, Jiangsu, Jiangxi, Shanxi, 
Shaanxi, Shandong, Tianjin, and Zhejiang) also substan-
tially affect the air quality over ocean more than distant 

regional sources like Mongolia do. Note that pollution 
levels are lower in summer than in winter and spring. 
In summer, the air quality over ocean is much more 
affected by local sources than by distant regional sources. 
The autumn air quality over ocean is also significantly 
impacted by local pollution sources. Overall, the results 
show that local sources from mainland China are the 

Fig. 8  Spatial distribution of annual and seasonal trends in OMI-based  SO2 concentrations. The black dot (.) symbol indicates significance at a 
95% confidence interval
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major contributors to air pollution over land and ocean 
(Wang et al. 2021b), which are strongest in winter, fol-
lowed by spring, autumn, and summer seasons.

5  Conclusions

The major findings are as follows:

• During the study period,  NO2 and  SO2 pollution hotspots 
were mainly located over land surfaces, which can be 
attributed to severe anthropogenic activities. On a sea-
sonal scale,  NO2 and  SO2 were highest in winter and 
lowest in summer over land and ocean surfaces.

• The frequency distribution demonstrated that OMI  NO2 
and  SO2 were higher over land than ocean. The occur-
rence frequencies of  NO2 and  SO2 for 0.15– 0.30 bin 

were common over ocean surfaces, and 0.30– 0.45 bin 
was common across land surfaces.

• A good agreement was found between OMI  NO2 and  SO2 
and anthropogenic emissions  (NOx and  SO2) across land 
surfaces than the ocean.

• Annually, OMI  NO2 (DU) over land surfaces showed 
insignificant decreasing trends from 2005 to 2020, while 
 NO2 (DU) over ocean surfaces showed minor increasing 
trends. Moreover, significant decreasing trends in  SO2 
(DU) were larger over land surfaces than the ocean.

• Anthropogenic emissions of  NOx and  SO2 were decreased 
over land surfaces, while NOx emissions across ocean 
surfaces showed significant increasing trends.

• The PSCF analysis identified higher contributions of  NO2 
and  SO2 over ocean and land from local sources than 
from long distant regional sources. These contributions 
are stronger in winter, followed by spring, autumn, and 
summer seasons.

Fig. 9  Trends in OMI-based  NO2 and  SO2 for the periods 
2005– 2020, 2006– 2010, 2011– 2015, and 2013– 2017 over ocean and 
land (Jiangsu Province). The red line indicates an increasing trend, 

and the blue line indicates a decreasing trend of  NO2 and  SO2. Aster-
isk (*) symbol indicates significance
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Fig. 10   Source identification of  NO2 and  SO2 over Ocean areas of Jiangsu Province in China during 2005– 2020 using the PSCF at seasonal timescales
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