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Abstract—Network function virtualization (NFV) has attracted
attention because of its flexible configuration and management
of network functions. Based on NFV, the service function chain
(SFC) defines a group of virtual network functions (VNFs)
connected sequentially, enabling flexible customization and pro-
visioning of network services. In the large-scale and hetero-
geneous Internet of Things (IoT) environment, e.g., industrial
IoT, servers provided by a single infrastructure provider (InP)
cannot support the deployment of all VNFs, and SFCs must
be deployed across multiple domains. However, SFCs deployed
across multiple domains will inevitably bring privacy leakage
and resource coordination difficulties, thereby reducing the
efficiency of network services. To address these issues, this paper
proposes a privacy-preserving deployment mechanism (PPDM)
for SFCs that achieves near-optimal SFC deployment across
multiple domains while protecting resource and topology privacy.
PPDM first performs virtual resource prediction and forms the
service intention response matrix (SIRM) based on SFC requests
(SFCRs). Second, the multi-domain controller (MDC) discovers
a near-optimal SFCs deployment strategy by deep Q-network
(DQN) using SIRM as input to protect domains’ privacy. Finally,
the learned strategies are distributed to intra-domain controllers
(IDCs) to implement specific services. Simulation results demon-
strate that the proposed method outperforms privacy-preserving
and non-privacy-preserving methods.

Index Terms—Service function chain (SFC), industrial Internet
of Things (IIoT), privacy protection, resource prediction, binary
response, deep Q-network (DQN).

I. INTRODUCTION

THE Internet of Things (IoT) has significantly expedited
people’s lives and productivity in recent years due to its
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quick growth and widespread applicability. The interconnec-
tion of everything has become an irresistible trend along with
the increasing network scale, and more recently, the combina-
tion of IoT and industry has created the industrial Internet of
Things (IIoT). Due to the numerous and widely dispersed IIoT
devices, the single infrastructure providers (InPs) are unable
to implement all network functions (NFs), such as security
NFs, throughout the entire region [1]. Deploying NFs across
several domains is now essential to ensuring effective service
provisioning in the large-scale IIoT.

The network function virtualization (NFV) technology de-
couples NFs from proprietary hardware, enabling low-cost
customization and flexible provisioning of NFs. Based on
NFV technology, IoT users define a series of virtual network
functions (VNFs) of the service function chain (SFC) to deal
with massive and heterogeneous IoT services flexibly [2]. To
date, SFC deployment in a single domain has been extensively
studied [3], [4]. In contrast, deploying SFCs across multiple
domains, which have a wide range of potential applications
(e.g., Satellite or Ground networks and IIoT), requires further
investigation due to some unsolved challenges [5]: 1) Each
domain has its own network operator in large-scale multi-
ple domains network and applies different management and
operation strategies. 2) Domains are not willing to disclose
confidential information (e.g., available resources, deployment
strategies and topology information [6], etc) and expect to
maintain their autonomy [7]. 3) Due to privacy concerns, infor-
mation interactions between domains are frequently lacking,
which severely impedes the service process of a multi-domain
network. Previous studies [8], [9], achieve the delay and cost
minimization deployment of SFCs across multiple domains
by utilizing a small amount of resource information supplied
by intra-domain controllers (IDCs). However, providing even
a small amount of resource information compromises the
privacy of domains. We argue that the best way to protect
privacy is to forbid uploading any private information from
each domain.

Therefore, this paper proposes a privacy-preserving deploy-
ment mechanism (PPDM) for SFCs across multiple domains,
based on intra-domain binary response and resource predic-
tion, which completely hides the real resource and the network
topology information in each domain. Specifically, the multi-
domain controller (MDC) first sends SFC requests (SFCRs)
to IDCs, and nodes in each domain will return the binary
response ξ to IDC that indicates the deployment intention of
each VNF in SFC (i.e., if accept ξ = 1, or reject ξ = 0). Second,
the IDC will predict the virtual resource capacity based on
the node’s binary response to match the nodes with sufficient

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3311587

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lanzhou University. Downloaded on November 20,2023 at 08:17:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 2023 2

)(t

1

0

x

Users

Requesting SFCRs (u VNFs) 

to MDC.

IDC

Initializing the predicted node value 

to 0. )(tR
i

Sorting VNFs by resource requirement 

in descending.

i=u+1?

N

N
Y

SIRM
Y

End

Learning deployment policy.

Domain

DQN algorithm

MDC gathers all SIRMs

IDCs complete the deployment.

MDC delivers SFCRs 

to IDCs.

MDC

1=x

0=x

Establishing the SIRM with    .x

?)(R tR
u

v

i

n
³

)()()( tRtRtR
u

vii
+=

)(tRRR
u

v

i

n

i

n
-=

Sorting the nodes in each domain by predicted resource 

capacity in descending, and the top K of the nodes 

participate in the current VNF deployment.

Fig. 1. Flow chart for the model of the paper.

resources to participate in the current VNF deployment and
return the service intention response matrix (SIRM) to MDC.
Then, MDC learns the deployment strategies of SFCs across
domains based on deep Q-network (DQN) algorithm which
takes the SIRM as the input. The flow chart of the proposed
method is shown in Fig. 1. In short, the main contributions of
this paper are as follows.
• A hierarchical multi-domain SFCs deployment scheme is

proposed, with the MDC acting as the central controller
to interact with IDCs. Each IDC coordinates the nodes
and realizes the specific service deployments in the
corresponding domain.

• The SIRM-based privacy-preserving method is proposed
to prevent the disclosure of intra-domain information. The
upload SIRM strictly maintains privacy within the domain
based on binary response and resource prediction.

• The DQN-based cross-domain deployment algorithm
(CDDA) is proposed to achieve the efficient deployment
of SFCs. DQN receives SIRM as input to learn the
SFCs deployment strategy. Moreover, we propose an
SFCs acceptance rate optimization algorithm (AROA) to
improve the SFCs deployment acceptance rate.

• We implemented and compared PPDM to exist-

ing privacy-preserving and non-privacy-preserving algo-
rithms, to demonstrate the effectiveness of PPDM in
privacy protection and deployment performance.

The remainder of this article is organized as follows. Sec-
tion II introduces the related works. Section III presents the
system model and problem formulation. Section IV designs
and describes the process of the proposed algorithms. Section
V implements and evaluates the simulation results, Finally,
Section VI concludes this paper.

II. RELATED WORKS

To date, researchers have investigated the SFCs deployment
problem both in single-domain networks [10], [11] as well as
multi-domain networks [12], [13]. The deployment of SFCs in
single-domain networks simply takes into account the factors
of cost, latency, and resource consumption, because there
is no third party involved. In contrast, InPs are unwilling
to reveal detailed topology and resource information to a
third party in the multi-domain scenario. It is difficult for
multiple domains to reach a consensus, which significantly
hinders the SFCs deployment process. In this paper, we study
the privacy-preserving cross-domain SFC deployment prob-
lem based on deep reinforcement learning (DRL) technique.
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TABLE I
SUMMARY OF RELATED WORKS

Literature Contribution Technology Advantage Inferiority
Wang et al. [14] it is impossible for unauthorized

users to obtain data information
without the decryption method

distortion,
encryption,
and anonymity

brought powerful encryption capa-
bilities

high complexity and slow encryp-
tion speed

Mano et al. [13] employed secure multi-party com-
putation to protecte the privacy of
virtual networks

SMPC provided a new offence for cross-
domain privacy protection

the proposed method is complex
and time-consuming

Wang et al. [15] employed system to ensure the pri-
vacy and security of a large amount
of IIoT data by injecting noise in-
terference

DP ensured the privacy and security of
large amounts of data

distorted the data and the informa-
tion of nodes, which reduced the
availability of nodes

N. Toumi et al.
[9]

uploaded insensitive information
by each domain to diminish privacy
and security risks

LPP, NLPP, and
GPP

guaranteed the privacy of some in-
formation within the system

still exposed some private informa-
tion, which will affect the system’s
performance

Joshi et al. [16] used a learning algorithm to
efficiently deploy cross-domain
SFCs based on the uploaded
non-sensitive information

pSMART protected the privacy to some ex-
tent and optimized the response
time of MD-SFC orchestration

still exposed some private informa-
tion

Wang et al. [17] formulated as an ILP problem and
employed a distributed architecture
to enable cross-domain deployment
of SFC

ILP, two heuristic
algorithm

realized the cross-domain deploy-
ment of SFC

still caused privacy disclosure

Dietrich et al.
[12]

proposed a distributed architecture
to enable cross-domain deployment
of SFC

ILP, NF-Graph
partitioning and
embedding

exchanged critical information
which they need to function
properly

only considered a two-domains
network, which is inapplicable to
larger networks

Q. Zhang et al.
[18]

employed a distributed architecture
to enable cross-domain deployment
of SFC

heuristic
algorithm

utilized the concept of VNFs de-
ployment distribution across multi-
ple domains to effectively deploy
an SFC in the correct order

brought higher end-to-end delay
and resource consumption

Tusa et al. [19] designed a hierarchical orchestra-
tion scheme for SFC, utilizing the
global awareness and control capa-
bilities of SDN technology

SDN, HSP end-to-end slices across the whole
infrastructure provide a more ef-
fective resource management and
also better support the customers
mobility requirements

do not suitable for complex net-
works

Liu et al. [7] proposed a general distributed
method (GDM) to deploy SFCs
across multiple domains

ILP, SDN, GDM resolved the issue of SFC cross-
domain deployment and enable the
system to have better scalability

may reduce the deployment suc-
cessful rate

Pham et al. [20] proposed a VNF-FG deployment
strategy with automated inter-
domain load balancing

DDPG automated inter-domain load bal-
ancing and improved SFC accep-
tance rate

no significant performance advan-
tage in terms of delay, resource
utilization, and other aspects

Pei et al. [21] achieved optimal SFCs deployment DDQN minimized the VNF placement
cost, operation cost, and penalty
cost

only considered single-domain net-
works

Liu et al. [22] innovatively proposed a DRL-
based framework for deploying dy-
namic SFCs that combined MEC
and NFV

DDPG ensured effective and quick imple-
mentation of SFC orchestration

only considered single-domain net-
works

Shah et al. [23] each SFCR was executed by a DRL
agent to achieved optimal SFCs
deployment

Multi-Agent
DQL

achieved more efficient deployment
of SFC; centralized controller to
make centralized decisions

only considered single-domain net-
works

Therefore, this paper will summarize the related works from
three perspectives: intra-domain privacy protection, SFC cross-
domain deployment, and SFC deployment method based on
DRL. We further summarize relevant works by comparing the
contribution, technology, advantage, and inferiority, as shown
in Table I.

A. Intra-Domain Privacy Protection
Researchers have proposed many strategies to solve privacy

threats in various scenarios. Qi et al. [24] described evaluation
criteria and privacy protection algorithms in data mining, in-
cluding distortion, encryption, privacy, and anonymity. Among
them, encryption [14] is one of the most common privacy

protection technologies in IIoT and even most scenarios.
Although it’s difficult for unauthorized people to get real
information after encryption, this approach still has certain
drawbacks, including high algorithm complexity and sluggish
encryption speed, etc. Mano et al. [13] employed secure
multi-party computation (SMPC) to protect the privacy of
virtual networks. However, SMPC is still complex and time-
consuming to apply in a large-scale network scenario. To
address the issues mentioned above, the differential privacy
(DP) method [25] proposed in 2006 provides robust privacy
protection by minimizing the likelihood of information identi-
fication, i.e., by injecting signal perturbations into original data
sets. Wang et al. [15] ensured the privacy and security of large
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amounts of IIoT data by injecting noise interference. However,
they distorted the data, and the addition of noise disturbance
will distort the information of nodes and even reduce their
availability, which will adversely affect the SFC’s deployment
performance. Toumi et al. [9], let each domain upload non-
sensitive information through linear physical programming
(LPP), non-linear physical programming (NLPP), and global
physical programming (GPP) methods, which reduced privacy
and security risks to a certain extent. Joshi et al. [16] also used
a learning algorithm to efficiently deploy cross-domain SFCs
based on the uploaded non-sensitive information from each
domain. However, these methods still bring information up-
loading and privacy exposure. Therefore, it cannot be applied
to the scenario we have proposed.

In short, privacy protection methods have been extensively
studied. However, these methods are not fully applicable to
our proposed scenario, particularly in a large-scale network
where SFC requires a prompt response. Consequently, this
study employs a novel resource prediction and binary response
method and generates SIRM through the collaboration of the
MDC and IDCs, i.e., each node in the domain only provides
the service deploy intention. Our proposed method aims to
prevent the uploading of resource information and protects
topology privacy in each domain, while realizing the SFCs
deployment across multiple domains.

B. SFC Cross-Domain Deployment

In recent years, researchers have also proposed many op-
timization models and solutions for SFCs deployment across
multiple domains. For example, Wang et al. [17] formulated
the embedding of cross-domain SFCs as an integer linear
programming (ILP) problem, and two time-efficient heuristics
approaches were proposed to solve the SFC cross-domain
deployment. However, they only considered a simple network
with two domains, which is inapplicable to larger networks.
Dietrich et al. [12] assumed that each domain could share
key information with a third party and deployed SFC to the
physical network from a global perspective to meet users’
requirements. A central controller is introduced to monitor the
physical network, collecting the resource information of each
domain to facilitate the cross-domain deployment of SFCs.
With the expansion and upgrade of SFCs, the distributed
cross-domain scenario urgently requires additional research.
Q. Zhang et al. [18] proposed an algorithm to find all feasible
mappings of a fixed-order or flexible-order SFC request in
multi-domain networks. However, the aforementioned tech-
niques will significantly increase resource consumption and
end-to-end delay. Tusa et al. [19] designed the hierarchi-
cally structured service provider (HSP) for cross-domain SFC,
based on the global awareness and control capabilities of
software-defined network (SDN) [26] technology. Liu et al.
[7] also realized cross-domain service deployment via the
global awareness of SND controller and proposed a general
distributed method (GDM) to deploy SFCs across multiple
domains. GDM first divides the SFC and forms multiple sub-
SFCs, then each domain is allocated to deploy sub-SFCs
according to the deployment strategy. However, the two-stage

optimization approach may reduce the success rate, and they
didn’t propose the corresponding method to optimize it. Never-
theless, the hierarchical architecture helps to avoid information
interaction between domains. As a result, this study considers
using a hierarchical architecture to achieve cross-domain SFCs
deployment, in which the MDC is responsible for interacting
with the IDC of each domain while avoiding interaction of
domains.

C. SFC Deployment Method Based on DRL

Traditional optimization methods, such as exact [27], heuris-
tic [28], and meta-heuristic [29] algorithms, are capable of
optimizing the SFCs deployment process to some extent. How-
ever, it is challenging to find an optimal solution with these
traditional methods for some practical problems, particularly
in dynamic and heterogeneous IIoT scenarios. Therefore, it is
necessary to identify an intelligent deployment method capable
of rapidly obtaining the solution in complex scenarios.

In recent years, DRL has received significant attention
in the areas of workload balancing [30], network resource
management [31], routing [32], and other problems. Inspired
by this, researchers have attempted to study the intelligent
model to achieve the cross-domain deployment of SFC [33].
For example, Pham et al. [20] incorporated Deep Deterministic
Policy Gradient (DDPG) method into a cross-domain problem,
they demonstrate the effectiveness of the suggested VNF-
FG deployment strategy with automated inter-domain load
balancing. Pei et al. [21] described the SFCs deployment
problem as a binary integer programming (BIP) issue in a
single-domain network. By integrating the double deep Q-
network (DDQN) method, the goal was to achieve optimal
SFCs deployment by minimizing the VNF placement cost,
operation cost, and penalty cost. Liu et al. [22] innovatively
proposed a DDPG-based framework for deploying dynamic
SFCs that combined mobile edge computing (MEC). By
utilizing the computing and autonomous learning capability
of the cloud and the edge, an intelligent network system is
constructed to effectively and quickly implement the SFCR
response. Shah et al. [23] regard the SFCs deployment as a
distributed problem and proposed an approach based on multi-
agent DQL method. Each SFCR was executed by a agent, and
all individual decisions were aggregated into a general decision
made by the central controller to deploy SFCs. Although the
preceding methods were utilized in simple networks, they
also paved the way for deploying SFCs across domains. Due
to the better robustness and convergence performance of the
DQN algorithm compared with other DRL algorithms [34].
We utilized the DQN algorithm to realize the cross-domain
deployment of SFCs and takes the binary response matrix as
the input of the DQN to protect the privacy of each domain.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

This section describes the hierarchical system model, pri-
vacy protection, and specific problem description of resource
prediction and intra-domain response, as well as the mathe-
matical formulations.
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Fig. 2. Cross-domain SFCs deployment architecture.

A. Hierarchical Model

We employ a hierarchical framework for cross domain SFC
deployment, as shown in Fig. 2, where the MDC acts as the
central controller, which connects all IDCs to achieve the
connection between users and InPs. Assuming that SFCRs
enter the system according to a Poisson distribution, MDC
will immediately send requirements to each domain controller.
When receiving the SFCR, each IDC will compare intra-
domain nodes with the SFCR and return the service deploy-
ment intention ξ. Accept (ξ = 1) indicates that the node has
sufficient resources for VNF deployment, whereas reject (ξ
= 0) indicates that there are insufficient resources. Notably,
if the node responds with accept, it assumes that resources
are occupied and will not release before the SFC departure.
This situation is referred to as “virtual occupancy”. The MDC
will combines the binary response returned by each domain
to form a global perspective, i.e., SIRM. The DQN takes the
SIRM as input and learns the deployment strategy. Finally,
MDC allocates the deployment strategies to each IDC for
SFCs implementation in each domain.

B. Node Response Process Optimization

During the response process, the nodes will continuously
update its state whenever they receive a new SFCR at time
t. Nonetheless, if all available nodes provide the accepted
response and node resources are occupied, the resource will
be insufficient to provide all VNFs due to virtual occupation,
as depicted in Fig. 3(a). Assume that MDC obtains an SFCR
at time t and transmits it to each domain. The IDC compares
the node’s resources to the requirements of the VNFs in each
domain and returns ξ. Among them, green nodes indicate
that the node has enough resources to instantiate the VNF,
and the red one indicates that it can’t instantiate the VNF.
All green nodes will deduct the resources capacity of the
corresponding VNF, as a result, when subsequent VNFs enter
the system, most of the nodes may give a rejection response,
and the acceptance response will be greatly reduced, as shown
in Fig. 3(a), which will have a significant impact on the
acceptance rate.

Therefore, to avoid this issue, this paper optimizes the
response process. When an IDC receives an SFCR, the IDC

TABLE II
NOTATIONS

Symbol Description
S A set of SFCs
N A set of nodes
L A set of links, l ∈ L
E A set of routing paths
Nn n-th domain in N
N i

n i-th node in domain Nn

lii
′

n Link between nodes N i
n and N i′

n

lii
′

nn
′ Link between nodes N i

n and N i′
n′

diu u-th VNF processing delay deployed in node N i
n

dii
′

n Link delay of lii
′

n

dii
′

nn
′ Link delay of lii

′

nn
′

ξ VNF deploy intention, ξ = {0,1}
S A set of SFCs
V A set of VNFs
ss(t) s-th SFC entering the system at time t
vu(t) u-th VNF entering the system at time t
Ru

v (t) Resources requirement of VNF vu(t) at time t
Ri

n Real resource capacity of node N i
n

Ri(t) Predicted resources capacity of node N i
n

X Whether Ri
n is sufficient to deploy SFC ss(t)

X
Ni

n
vu Indicate whether vu(t) is deployed on node N i

n

Y i,j
l Whether the virtual link l is mapped between nodes N i

n and
Nj

n

Pi(t) Resource utilization of node N i
n

PN (t) Resource utilization of all nodes N
dprop Propagation delay
dtran Transmission delay
tproc Processing time of each data packet
dproc Processing delay
ϑt(N i

n) Load utilization of node N i
n at time t

Oi(t) Available load of node N i
n

Ou(t) Load of VNF vu(t)
Lpacket Data packet length
dis Distance between two nodes in the network
c Signal propagation speed in the physical link
f Packet transmission rate
σo Data packet rate
σt
u Packet rate of VNF vu(t)

τ tu Packet processing rate in VNF vu(t)
Wn Service intention response matrix(SIRM) of domain Nn

W Overall SIRM
r(s, a) Obtained immediate reward
Ds

end(t) End-to-end delay of SFC ss(t)
r(δ|s, a) Immediate reward obtained by ξ
r(ρ|s, a) Immediate reward obtained by estimating whether the nodes

selected by MDC are the same
oPN (t) Normalization of PN (t)
oDs

end
(t) Normalization of Ds

end(t)

K The proportion of response nodes

will first predict the available node resources based on the
node’s response, for example, if two VNFs have received the
accept response ξ = 1, and the resource requirement of these
two VNF are a and b respectively, the resource capacity of
the node must be large than a + b. Then match the nodes
with sufficient resources to participate in the current VNF
deployment by resource sorting, that is only the matched nodes
will be taken into account for the current VNF deployment.
According to the simulation results presented in Section V,
in the response process, the SFC acceptance rate and end-
to-end delay will be improved if the VNF with the largest
resource requirement match with the nodes that have the top K
resource capacity in each domain, where K is determined by
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(a) Nodes response without reasonable matching. (b) Nodes response with reasonable matching.

Fig. 3. Optimizing the response process by resource matching. After reasonable matching between VNF and response nodes, the virtual
resource occupation can be reduced as much as possible, thereby improving the service success rate.

the simulation setup. As shown in Fig. 3(b), green nodes and
red nodes represent acceptance and reject nodes, respectively,
while blank nodes indicate that they are not compared with
incoming VNFs, in this example, K = 30%. Through the
optimization mentioned above, the system can prevent the
previous VNFs from consuming an excessive amount of node
resources, and improve the acceptance rate.

C. Privacy Protection

As we discussed in Section I, the underlying network
topology and resource capacity information in each domain
will be considered private information and can not be exposed
to third parties, therefore, node binary response and resource
prediction technologies are used to protect privacy while
achieving the cross-domain SFC deployment, as we discussed
in previous sections III-A and III-B.

In the whole response process, we can say that only SIRM
is uploaded to the upper MDC for DQN policy learning,
the IDC predicts the node resource for reasonable matching
between VNF and nodes rather than directly perceiving the
real resource information, the network topology and node
resource information in each domain is strictly stored locally.
It is worth mentioning that although the MDC is directly
connected to each IDC, and the IDCs upload the binary matrix
to the MDC for decision-making, there is no direct information
exchange between domains, and security technologies such as
blockchain can be applied to prevent MDC from information
leakage, it is also difficult for attackers to restore the real
network resource situation just based on the binary matrix.

D. Problem Description

Assume that the network topology is represented by D
= (N,L), where N represents a set of nodes, and L is a

set of links between two nodes. The n-th domain in N is
denoted by Nn, and a node in the network is denoted by
N i

n ∈ Nn. The link between the node N i
n and N i′

n in the
same domain is represented by lii

′

n ∈ L, and the link between
the node N i

n and N i′

n′ in the different domains is denoted
as lii

′

nn′ ∈ L. The VNF processing delay in node N i
n is

represented as din, and the link delay of lii
′

n and lii
′

nn′ is

represented by dii
′

n and dii
′

nn′ respectively. Each VNF requires
various resources (e.g., memory and CPU cores). In this paper,
the computing resources of nodes and delay of links are taken
into account for SFC deployment, while we only consider
the general computing resources (i.e., CPU cores) [35] which
can be extended easily to multiple resource types, the node
resource measured by units and represented by Ri

n, the link
delay are measured by ms. When SFC is deployed across
multiple domains, the VNFs are deployed to various nodes
in different domains. Suppose, at time t, the SFC consists of
u VNFs entering the system, which is denoted as vu(t), and
needs to deploy by searching for suitable nodes in the physical
network. The predicted resources of N i

n and required resources
of vu(t) are denoted as Ri(t) and Ru

v (t), respectively.

1) Node Binary Response: We assume that the resource
information is strictly maintained within the node and is
unavailable to both IDC and MDC. After SFCs enter the
system, MDC receives the service requests and sends the
SFCRs to IDC. Then, IDC directs the nodes in each domain
to give the binary response and IDC will predict the node’s
virtual resources capacity of the nodes to match the node for
VNF deployment. The resource Ru

v (t) required by each VNF
on the SFCR will be compared with the resource capacity Ri

n

of each node N i
n, and each node only gives the binary response

indicates whether it is enough for the u-th VNF deploying:
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X =

{
1, if Ri

n ≥ Ru
v (t).

0, otherwise. (1)

2) Node Resource Prediction: Assume that there are
total m VNFs satisfy X = 1, i.e., can be deployed
in the corresponding node, and these m VNFs have
the corresponding resources requirement of R

u(X=1)
v =

{R1(X=1)
v , R

2(X=1)
v , ..., R

m(X=1)
v }. Therefore, the resource

capacity of the node must be greater than the total resources of
all VNFs that can be instantiated, and the predicted resources
of node N i

n can be expressed as:

Ri(t) ≥
m∑

u=1

Ru(X=1)
v (t). (2)

Since we only consider node resource values that are
compatible with VNFs deployment, the final predicted value
can be taken directly as the minimum predicted value of Ri(t).
This ensures that the predicted value is equal to or less than
the actual value of node N i

n, thus ensuring that all nodes
which receive an accepted reply can be deployed to node
N i

n successfully. Therefore, the predicted value of the node
resource capacity is:

Ri(t) =

m∑
u=1

Ru(X=1)
v (t). (3)

3) Reasonably matching VNF with Nodes: To increase the
deployment acceptance rate, VNF and nodes need to be sorted
reasonably to achieve the best match between VNF and nodes,
and those nodes that do not match with the VNF don’t need
to give a reply, avoiding the virtual occupation of network
nodes as much as possible. Specifically, the VNFs in an SFC
are sorted by resource requirement before comparison, with
the VNFs requiring the most resources being compared first.
Similarly, all nodes are sorted according to the predicted
resource capacity, and the top K of nodes are chosen to
provide the VNF accept or reject response to avoid the
excessive resource virtual occupy, as discussed in Section
III-B. This ensures the matching of VNFs that require great
resource requirements with the resource-sufficient node, hence
maximizing node resource usage. Finally, when a node gives
an acceptable signal, it will deduct the corresponding VNF
resources, and other nodes will be release. Therefore, the
preceding process prevents all nodes from participating in
resource reduction and reduces the risk of SFC deployment
failure.

As shown in Fig. 4, multi-domain networks consist of
three domains, with four switching nodes and three servers
in domain 1, while domains 2 and 3 consist of a single node.
Assume that the s-th SFCR enters the system at time t and the
required resources for VNFs are assigned in decreasing order
as follows:

R2
v(t) ≥ R3

v(t) ≥ R1
v(t) ≥ R4

v(t). (4)

Assuming that IDC correctly predicted the virtual resource
situation and three nodes in domain 1 are sorted in descending
according to their predicted resource capacity as follows:

R2(t) ≥ R1(t) ≥ R3(t). (5)

SFCR

 
VNF1-FW VNF2-VPN VNF3-NAT VNF4-DPI

VNF1

VNF2

VNF3

VNF4 VNF1

VNF2

VNF3

VNF4

VNF1

VNF2

VNF3

VNF4

Domain 1 Switch

Server

N1

1

N1

2

N1

3

Domain2-N2

1

VNF1

VNF2

VNF3

VNF4

Domain3-N3

1

VNF1

VNF2

VNF3

VNF4

Fig. 4. VNFRs response status of nodes in domains.

TABLE III
VNFRS RESPONSE ON EACH DOMAIN NODES

Domain1 Domain2 Domain3

Node N1
1 N2

1 N3
1 N1

2 N1
3

VNF1 0 0 0 1 0

VNF2 0 1 0 0 1

VNF3 1 1 0 0 0

VNF4 0 0 0 0 1

Then, top K of nodes are first compared with V NF2 which
requires the largest resource requirement. Suppose that in the
previous prediction step, N3

1 has insufficient resource capacity
to instantiate any VNFs. Therefore, we exclude N3

1 , selecting
N2

1 to compare with V NF2. If R2(t) ≥ R2
v(t), the resource

capacity of N2
1 can ensure the deployment of V NF2. In this

case, the node resources are deducted:

R2(t) = R2(t)−R2
v(t). (6)

An acceptance response is given after deduction. Similarly,
node N1

3 with the second largest predicted resource capacity
will do the same operation. The nodes are reordered after
deducting resources, and the top K of nodes are compared
with V NF3 again, then the corresponding resource value is
deducted. After comparison and resource deduction, each VNF
of s-th SFCR can obtain two different responses (i.e., ξ = 1, or
ξ = 0), as shown in Table III. Finally, the SIRM will feed into
DQN neural network for SFC deployment action learning.

4) SFCs Deployment: Each IDC returns the binary re-
sponse of nodes to MDC to form the SIRM, and these local
matrices comprise the global view. MDC utilizes this global
view to determine the deployment strategy, which identifies
specific nodes in each domain to provide resources for VNFs
deploying and connecting links between nodes. When the
deployment is completed, MDC receives a signal indicating
whether it was successful or failed. Using the success signal,
MDC can evaluate the performance of the deployment. On the
contrary, MDC can improve the deployment process by failed
signal. At the same time, when new SFCs arrive, each node
will execute a new round of resource prediction and binary
response. Then, each domain uploads a new SIRM to MDC for
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the next round of deployment. During the deployment of SFCs,
the SFCRs received by MDC are dynamically entered into the
system. SIRM will be continuously updated, and the updated
SIRM will be used to deploy the corresponding SFCRs. Then,
the IDC utilizes the deployment strategy learned by MDC to
deploy the VNFs and link.

E. Joint Resource Utilization and Delay Optimization

Considering the single optimization goal (e.g. end-to-end
delay) may cause resource and energy waste, which is not
appropriate for resource and energy-limited IIoT. Therefore,
this paper jointly optimizes service delay and resource utiliza-
tion. Reducing overall service delay to the maximum extent
by making full use of the existing network resource.

1) Resource utilization: We introduced two variables Pi(t)
and PN (t) to describe the resource utilization of each node
and the entire network, respectively:

Pi(t) =

∑
Ru

v (t)

Ri
, (7)

PN (t) =

∑
Pi(t)

N
, (8)

where Ru
v (t) denotes the resource requirement of VNF de-

ployed in node N i
n. The resource utilization of the node Pi(t)

represents the resource usage of this node at time t. While the
resource utilization of the whole network PN (t) refers to the
average resource usage of network nodes and is calculated by
dividing the total resource utilization of all nodes by the node
number.

Let XNi
n

vu be a binary variable, indicating whether the u-th
VNF in the SFC has been deployed to N i

n:

X
Ni

n
vu =

{
1, if the VNF of SFC is placed on N i

n .
0, otherwise. (9)

Similarly, Y i,j
l is a binary variable, indicating whether the

virtual link is mapped to the link between N i
n and N j

n:

Y i,j
l =

{
1, if virtual link l is mapped between N i

n and N j
n .

0, otherwise.
(10)

If both binary variables X
Ni

n
vu and Y i,j

l are 1, the SFC is
considered deployed successfully.

2) End-to-end delay: The SFC end-to-end delay depends
on various factors, including computing, networking, and
storage resources, as well as the traffic mode of the links.
Generally, the end-to-end delay consists of processing, trans-
mission, and propagation delays [36]:

Ds
end(t) = dproc(st) + dtran(st) + dprop(st), ∀s ∈ S. (11)

Propagation delay (dprop): We use real-world topology in
this paper. dprop predominantly depends on the physical dis-
tance and the transmission speed of a signal in a transmission
medium:

dprop(st) =
dis

c
, (12)

where dis represents the distance between two nodes, and c
represents the speed of signal propagation in the link (c mainly
depends on the transmission medium of the link).

Transmission delay (dtran): dtran depends on the period of
sending the data packet from the sender to the receiver and is
related to the packet length and data transmission rate:

dtran(st) =
Lpacket

f
, (13)

where Lpacket represents the length of the processed packet,
f indicates the packet transmission rate.

Processing delay (dproc): dproc typically occurs when a host
or a system needs to process a received packet. The packet
processing includes, but is not limited to, header analysis,
data extraction, error checking, and finding the appropriate
route. As the data rate increases, the processor’s load becomes
heavier, causing significant processing delays. The processing
delay of the u-th VNF in the SFC at time t can be expressed
as:

diu =
X

Ni
n

vu (1 + ϑt(N
i
n))

1− ϑt(N i
n)

tproc, (14)

where ϑt(N
i
n) = Ou(t)

Oi(t)
represents load rate of node N i

n at
time t, Oi(t) indicates the available load of each node, Ou(t)
denotes the load requirement of VNFs in node N i

n, tproc
represents the processing time of each packet. Therefore, the
processing delay of the SFC s at time t is expressed as:

dproc(st) =

|V |∑
u=1

diu, (15)

where |V | represents the total number of VNFs in SFC ss(t).
3) Optimization objective: The optimization objective of

our SFCs deployment problem is defined as:

O = min
{XNi

n
vu ,Y i,j

l }

∑|S|
s=1 D

s
end(t)

|S|PN (t)
, ∀s ∈ S, (16)

where X
Ni

n
vu and Y i,j

l are two optimization variables learned
by the DRL-based algorithm, as described in the next section,
and |S| represents the total number of SFCs. The objective
can be achieved by minimizing service end-to-end delay and
improving the utilization of network resources.

In addition, the following network conditions must be re-
stricted to ensure a successful SFCs deployment. The resource
demand of all VNFs instantiated in the node should not exceed
the total resource capacity, and the computing load of the node
should not exceed the maximum load rate, as defined in (17)
and (18), where Ru

v (t) denotes the resource requirement of
VNFs deployed in node N i

n, while ϑt(N
i
n) represents the load

rate of node N i
n at time t. The constraint of (19) ensures each

VNF can be assigned to only one node in the network, while
(20) ensures the routing path between VNFs can be assigned
to a single physical link.

Ri(t) ≥
∑

Ru
v (t) ·X

Ni
n

vu , (17)

ϑt(N
i
n) ·X

Ni
n

vu ≤ 1, (18)

∑
X

Ni
n

vu ≤ 1, ∀u ∈ V, (19)

∑
Y i,j
l ≤ 1, ∀l ∈ L. (20)
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IV. SFCS DEPLOYMENT STRATEGY BASED ON DQN

Traditional methods cannot learn the deployment strategy
well just relying on the SIRM, while the DQN algorithm has
obvious advantages in matrix input learning. Therefore, this
section presents the DQN to assist MDC in determining the
SFCs deployment strategy based on the SIRM.

A. Acceptance rate optimization algorithm

As stated in Section III-B, binary responses without re-
source prediction and reasonably matching will result in a
lower SFCs acceptance rate due to the virtual occupation of
node resources. The VNFs that request resources later will
receive a rejection response because the node resources are
“insufficient”. Therefore, by predicting each node’s resources
and carrying out a suitable sorting and node matching during
the response, the SFC acceptance rate can be greatly enhanced,
as shown in Fig. 3.

We propose an acceptance rate optimization algorithm
(AROA), as shown in Algorithm 1, AROA takes a group
of VNFs connected in sequence as input. Let the VNFs set
V = (V1, V2, ..., Vu), MDC sends the set to each IDCs, and
IDC distributes V to all intra-domain nodes (line 1). Assume
that the node set in the current system is N , and the initial
predicted value Ri(t) is initialized to 0 (line 2). Then, the
resource Ri

n of each node N i
n in the node-set N is compared

with the requested resource Ru
v (t) of VNF one by one, select

the VNFs set V ′ = (V ′
1 , V

′
2 , ..., V

′
u′) that can be deployed in

the node and add all the required resources of VNFs in set
V ′ to get node prediction resources (lines 3-11). Then, the set
V ′′ is obtained by sorting VNFs resources in descending order
(line 12). The nodes are also sorted according to the predicted
value Ri(t) in descending order, and the top K of the nodes
are selected to form the new set N ′ (line 13), where K is
determined by the corresponding simulation setup. Comparing
each VNF with the new node set N ′ in order. If the resource
Ri

n of node N i
n is larger than the requested resource Ru

v (t) in
set V ′′, return an acceptance answer, i.e., ξ = 1; otherwise, ξ
= 0 (lines 14-23).

B. Cross-domain SFCs Deployment based on DQN

This section will describe the learning process of the DQN-
based SFCs deployment strategy. The entire system comprises
two fundamental components: the observed SIRM and MDC.
These components combine with DQN to determine the de-
ployment decision for cross-domain SFCs.

1) Markov Decision Process Modeling: During the deploy-
ment process, the deployment of SFCs in the current state
is dependent on the previous state, or the response at the
previous instant, indicating that the deployment of SFCs has
the Markov property. Due to the dynamic feature of SFCRs
and the complexity of the network, traditional approaches
hard to simultaneously obtain promising performance while
protecting the privacy, which is an NP-hard problem [37].
This problem can be transformed into a Markov decision
process (MDP), and solved by DRL-based algorithm. MDC
constructs the global view provided by the SIRM return from

Algorithm 1 SFCs Acceptance Rate Optimization Algorithm
Input: VNFs set V = (V1, V2, ..., Vu)
Output: SIRM

1: MDC distributes VNFs set V = (V1, V2, ..., Vu) to all
IDCs;

2: Initialize the predicted node value Ri(t) = 0;
3: for N i

n ∈ N do
4: for Vi ∈ V do
5: if Ri

n ≥ Ru
v (t) then

6: Node predicted value is Ri(t) = Ri(t)+Ru
v (t);

7: else
8: The predicted value of node Ri(t) remains

unchanged;
9: end if

10: end for
11: end for
12: Sort the VNFs resources in descending to obtain the new

set V ′′;
13: Sort nodes in descending according to the predicted value

Ri(t), and the top K of nodes is selected to form the set
N ′;

14: for N i
n ∈ N do

15: for Vi ∈ V ′′ do
16: Compare each VNF with the selected nodes of N ′

in order;
17: if Ri

n ≥ Ru
v (t) then

18: return ξ = 1;
19: else
20: return ξ = 0.
21: end if
22: end for
23: end for

each domain, which is considered the system state (S(t) = s).
DQN takes SIRM as input and learns action (A(t) = a) which
determines the VNF placement and traffic scheduling across
multiple domains. Considering a standard DQN configuration,
MDC continuously learns by interacting with the environment
and improves its performance via the rewards function. Then,
the system goes to the subsequent state S(t+1) and obtained
the long-term expected reward R(t). which are defined as
follows:

State space S(t): Let S(t) denotes the network state at time
t. S(t) = {W}, W = {W 1,W 2, ...,Wn}, n ∈ N , is a binary
matrix, as shown in Algorithm 1, each IDC obtains SIRM
(Wn) from its domain by comparing the resources of nodes
and VNFs. MDC observes Wn of each domain and combines
it to form a global view (W ).

Action space A(t): Let A(t) denotes the action at time
t, A(t) =

{
X

Ni
n

vu , Y i,j
l

}
, where, X

Ni
n

vu and Y i,j
l are both

binary variables, and represent the SFC embedding and traffic
scheduling strategy, respectively, where X

Ni
n

vu = 1 if VNF
of SFC is placed on N i

N , otherwise it’s equals to 0, in the
same way, Y i,j

l = 1 if the virtual link is mapped between N i
n

and N j
n, otherwise it’s equals to 0. The service is considered

as successful when traffic passes through all of the VNFs
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Fig. 5. SFCs deployment process based on DQN.

in an SFC. MDC continually learns by interacting with the
environment and improves its performance through a reward
function.

Reward function R(t): This paper aims jointly optimize
the resource utilization and the service end-to-end delay of
the tasks. However, these two optimization objectives have
different units and cannot be accumulated directly, therefore,
we first need to normalize these two objectives into [35]:

oPN (t) = max

{
−1,

PN (t)

Pmax
+ 1

}
∈ [−1, 1] , (21)

oDs
end(t)

= max

{
−1,

−Ds
end(t)

Dmax
+ 1

}
∈ [−1, 1] . (22)

In our model, a higher system reward can be obtained by
high resource utilization and low service end-to-end delay.
To guarantee that VNFs can be successfully deployed on
nodes, this study added parameters and reward discounts for
selecting various nodes. It took the inverse function of resource
occupancy rate and end-to-end delay as the reward after taking
action. The immediate reward r(t) is defined as:

r(t) = r(δ|s, a)+α · [oPN (t)] +β · [oDs
end(t)

] · r(ρ|s, a), (23)

where 0 ≤ α, β ≤ 1 represents the reward discount and α +
β = 1. r(δ|s, a) and r(ρ|s, a) represent the immediate reward
obtained after action A(t) in state S(t). PN (t) and Ds

end(t)
are the resource utilization and SFC end-to-end delay after
deployment. r(δ|s, a) indicates the response status of the node
selected by MDC. If ξ = 1, give a larger reward; ξ = 0, give a
smaller reward. r(ρ|s, a) indicates whether the nodes selected
by MDC are the same. If a node is selected repeatedly, a
small reward will be given; otherwise, a large reward will be
given. r(ρ|s, a) avoids that the system continuously selects
the same node to reduce the end-to-end delay, resulting in
insufficient node resources and eventual deployment failure.
The DRL method aims to find an optimal policy to maximize
the cumulative reward R(t) =

∑T
t=1 r(t) while following the

policy.
2) SFC Cross-domain Deployment Algorithm based on

DQN: This section will specifically introduce the CDDA
based on DQN for SFC, as shown in Fig. 5.

Both Q-learning and DQN [38] are typical value-based RL
methods. The approaches use the value function to learn the
optimal strategy through interaction with the environment. The
action value function of Q-learning can be presented as:

Qπ(s, a) = Es[r(s, a) + γEa′π[Q
∗(s′, a′)]], (24)

where r(s, a) represents the obtained immediate reward after
the state s takes action a. γ is the discount reward that is used
to calculate the cumulative reward from the state to the end,
and Q∗(s′, a′) is the optimal value action function.

DQN integrates the Q-learning algorithm with a deep neural
network, which introduces the training target network and
experience replay. The learning process is shown in Algorithm
2. First, MDC observes SIRM (Wn) of each domain and
combines it as input to form a global view (W ) (line 1).
Initialize the predicted value Ri(t) of node, and initialize
the Q-network parameters (line 2), then, MDC selects nodes
for VNFs deployment with the input SIRM based on current
policy and outputs the action A(t) (line 4). After the action is
executed, MDC will receive an immediate reward r(t). Then,
the current state s will be transited to the next state s′ (lines
5-9); and the experience E(s, a, r, s′) will be stored in the
replay buffer (line 10). When the replay buffer has enough
transition samples, a mini-batch of data can be selected from
the experience pool for network training (line 12). DQN adopts
a dual deep neural network structure (i.e., target network and
evaluate network), and updates the network parameters by
minimizing the loss function (lines 13-14), as shown in:{

y = r(t) + γ ·maxa′Q̄π(s′, a′),
L(θ) = E(s,a,r,s′)[(Q

∗(s, a|θ)− y)2],
(25)

where Q̄ represents the target network, and θ is the parameter
of the evaluation network. The target network Q̄ copies the
parameters from the evaluated network in a fixed-steps. This
parameter updating scheme can break the learning experience’s
correlation in order to stabilize the training process.

Algorithm 2 DQN-based CDDA of SFCs
Input: SIRM (Wn)
Output: Deployment strategies

1: MDC observes global SIRM(W ).
2: Initialize the predicted value of node Ri(t), and initialize

the network parameters.
3: for N i

n ∈ N do
4: Select nodes and links for SFCs deployment;
5: Return immediate reward according to the response of

selected nodes: r(δ|s, a);
6: Return immediate reward according to the coincidence

of selection nodes: r(ρ|s, a);
7: Get rewards:
8: r(t) = r(δ|s, a) + α · [oPN (t)] + β · [oDs

end(t)
] · r(ρ|s, a);

9: Update status: E(s, a, r, s′);
10: Store E(s, a, r, s′) into experience pool;
11: if MDC has enough transition samples then
12: Select a small batch of data from the experience

pool for training;
13: Minimize loss function:
14:

{
y = r(t) + γ ·maxa′Q̄π(s′, a′),

L(θ) = E(s,a,r,s′)[(Q
∗(s, a|θ)− y)2].

;

15: else
16: Return to line 2;
17: end if
18: end for

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3311587

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lanzhou University. Downloaded on November 20,2023 at 08:17:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 2023 11

(a) topology scale = 19 nodes (b) topology scale = 38 nodes (c) topology scale = 110 nodes

Fig. 6. Real-world topology selected from the Internet Topology Zoo.

C. Algorithm Complexity

Assume that the topology scale of the network is N and
the number of VNFs in SFCs is M . In Algorithm 1, the ini-
tialization process (lines 1-2) and the resource sorting process
(lines 12-13) are executed only once. The first for loop (lines
3-11) executes 2MN + N operations, while the second for
loop (lines 14-23) requires 3MN +N operations. Therefore,
Algorithm 1 has a total complexity of 5MN + 2N + 4. In
our actual simulation, the network topology scale is set to
19, 38, and 110 nodes, and is divided into three domains.
The total number of VNFs considered in our simulation
ranges from 3-6 VNFs. The total algorithm complexity can
be represented as O(zMN), where z is an integer, implying
that the first proposed algorithm has an acceptable complexity.
In the same way, Algorithm 2 requires 8N + 2 operations.
The main algorithm complexity of Algorithm 2 is the training
of the DQN neural network, which takes between 26-45
seconds to converge on 2000 episodes, the training time is
also acceptable.

V. SIMULATION RESULTS AND DISCUSSIONS

This section describes the parameter settings and analyzes
the simulation results in order to evaluate the advantages and
disadvantages of the proposed algorithm.

A. Simulation Setup

1) Node and Link Setting: Due to the lack of a topology
dataset designed for the cross-domain deployment of IIoT, we
still use existing distributed topologies for custom design, the
topology scale is configured based on the conventional number
of equipment in IIoT simulation [39]. We select three real-
world topologies from the Internet Topology Zoo [40], namely
Aarnet, China Telecom, and Interroute, which are comprised
of 19, 38, and 110 nodes, respectively, as shown in Fig. 6.
In each domain, each topology is divided into three network
domains based on the actual topology distribution, as shown
in Table IV. The node resources capacities are set randomly
between 7-19 units. The link delay is configured as shown
in Table V, according to our previous work [41], where the
diagonal value is configured as the link delay in each domain,
and the rest are link delays between two domains. It can be
seen that the link delay of the inter-domain link is larger than

TABLE IV
DOMAIN CLASSIFICATION OF TOPOLOGIES

Internet Topology Domain 1 Domain 2 Domain 3
Aarnet Node 0-6 Node 7-13 Node 14-18

China Telecom Node 0-15 Node 16-29 Node 30-37

Interroute Node 0-25 Node 26-79 Node 80-109
TABLE V

LINK DELAY SETTING

Domain Domain 1 Domain 2 Domain 3
Domain 1 5-10ms 11-20ms 21-30ms

Domain 2 11-20ms 5-10ms 11-20ms

Domain 3 21-30ms 11-20ms 5-10ms

that of the intra-domain, which is consistent with the actual
situation. The node resource and link delay is randomly set
according to the defined range and fixed during the comparison
process to ensure fairness. But when starting a new round of
experiments, these settings will reset correspondingly.

2) SFC and VNF Setting: The SFC requests follow the
realistic traffic trace pattern that arrives following a Markov-
modulated Poisson process (MMPP), with two states mean
inter-arrival time 12 and 8 (50% higher rate) every 100-time
steps with 5% probability, which has been widely used for
modeling SFC requests in recent works [35]. The simulation
runs in 100,000 time steps, and 3,000 SFCs enter the system
according to the defined traffic pattern. Each SFC consists
of 3-6 VNFs, the processing delay of each VNF is set
between 5-10 ms. In this paper, we employ eight commonly
used VNFs, including DPI (Deep Packet Inspection), NAT
(Network Address Translation), FW (Firewalls), TM (Traffic
Management), WOC (WLAN over CATV), IPS (Intrusion
Prevention System), and IDS (Intrusion Detection System). A
set of VNFs are connected sequentially to comprise the SFC
based on user requirements, and the resource requirement of
each VNF is randomly assigned a value between 2-8 units.

The simulation runs on server with 12GB memory, Intel(R)
Core (TM) I5-9500, CPU @ 3 GHz. We use python 3.7 de-
velopment environment for programming and implementation.

B. Baseline Algorithms

As benchmarks, we employ three comparing algorithms,
including privacy protection and non-privacy protection meth-
ods, which are introduced as follows:
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1) Exposing privacy shortest path (EP-SP) algorithm: EP-
SP algorithm directly finds the shortest path with the shortest
delay and high resource utilization in a completely transparent
network when SFC enters the system. The EP-SP algorithm
can directly identify the shortest path with the theoretically
minimum delay based on the exposed resource information.
In an ideal situation, the delay performance of our proposed
method should be comparable to that of the EP-SP algorithm
while protecting privacy.

2) Exposing privacy deep Q-network (EP-DQN) algorithm:
Similar to EP-SP algorithm, EP-DQN algorithm also learns the
SFCs deployment strategy in a fully transparent network. Our
proposed method and EP-DQN algorithm use the same DQN
algorithm to determine the deployment strategy. However,
using resource information as input to discover the deployment
strategy will compromise privacy. Therefore, EP-DQN algo-
rithm verifies whether the proposed scheme has advantages in
the dynamic cross-domain deployment of SFC by using SIRM
as the input of the DQN network.

3) Column generation algorithm based SFCs deployment
(CG-BSFC) algorithm [42]: CG-BSFC algorithm is a privacy-
preserving algorithm that hides the topology and resource
information of each domain based on the column generation
method. In addition, the CG-BSFC algorithm employs a
conventional heuristic algorithm to determine the deployment
decision based on the pre-allocated scheme. After receiving
SFCR, the system directly provides available schemes ac-
cording to the SFC length and SFC source node to avoid
exposing the resource information. CG-BSFC algorithm is
used to compare the privacy protection of SFCs deployment
across domains with the proposed scheme.

C. Simulation Result

The simulation results presented in this study include the
learning curve of various DQN algorithm parameter settings,
the performance improvement by AROA, and a comparison
of the deployment performance of four algorithms.

1) Learning Curve: We first verify the learning curve
of different learning rates (0.01, 0.005, 0.001, 0.0005, and
0.0001) under an increasing topology scale. To obtain the best
convergence performance of the DQN-based cross-domain
deployment algorithm, we keep the original discount factor
of 0.95, by default, r(δ|s, a) and r(ρ|s, a) in reward function
were set with the range of [-10, 10] and [-1, 1], respectively.
As shown by the cumulative reward in Fig. 7, when the topol-
ogy is constantly increasing, the learning rate of 0.001 can
obtain the maximum cumulative reward in different network
topologies. Indicates that it can find a better solution in min-
imizing end-to-end delay and improving resource utilization.
In contrast, the learning rate of 0.0001 is less efficient, and
0.005, 0.001, and 0.0005 are also not superior.

As shown in Fig. 7, as the topology scale increases, the
cumulative reward of learning rates = 0.01, 0.005, and 0.0005
decreases significantly, whereas the learning rate of 0.001
remains relatively stable. In the case of a small number of
samples, the learning rate = 0.01, and 0.005 may achieve better
results. However, as the topology scales increase, the reward

decreases, and it becomes more difficult to achieve the global
optimal compared to learning rate = 0.001. While the learning
rate = 0.0005 is too small, which leads to slow convergence,
and more learning steps are needed. In short, the 0.001 was
selected as the learning rate of the DQN algorithm because it
provided the best convergence performance.

This paper aims to jointly optimize network resource uti-
lization and end-to-end delay, and control these two objectives
by α and β. We verify the best trad-off of these two objectives
as shown in Fig. 8. Three cases were verified, i.e., α = 0.2,
β = 0.8, α = 0.5, β = 0.5, and α = 0.8, β = 0.2.
While the parameters of α = 0.2 and β = 0.8 obtain the
highest cumulative rewards and obtain the best convergence
performance in three increasing network topologies. Therefore,
we choose α = 0.2 and β = 0.8 as the coefficients for
subsequent simulation.

2) Performance Improvement by AROA: As described in
Section III, the proposed AROA optimizes the SIRM to
improve the SFCs deployment acceptance rate. The propor-
tion (i.e., K) of nodes responsible for binary response will
significantly affect the acceptance rate of services, as shown
in Fig. 9. To determine the best proportion, K was set between
10% to 100%. Fig. 9(a) demonstrates that a smaller proportion
of response nodes leads to improved performance. When the
responding nodes are more than 60% of all available nodes, the
SFC acceptance rate decline sharply and only reaches about
36-60% acceptance rate in different topologies, due to the
virtual resource occupation. In contrast, when the proportion
of response nodes is between 10-30%, the SFC acceptance
rate can exceed 90% in various topologies.

As shown in Fig. 9(b), further examination of the end-to-
end delay of SFCs with K ranging from 10% to 30% reveals
that K = 30% yields the best delay performance among the
different topologies. In addition, we found that the end-to-
end delay of SFCs decreases slightly as the topology scale
increases. This is because the SFCs will be preferentially
deployed in the same domain. That is why we introduce the
instants reward r(ρ|s, a) in the reward function (23), r(ρ|s, a)
avoids the system continuously selects the same node to reduce
the delay, resulting in insufficient node resources and eventual
deployment failure.

3) SFC Acceptance Rate: PPDM protects privacy during
the cross-domain deployment of SFCs by using the SIRM as
input for DQN rather than resource information. We further
improve the service acceptance rate through the AROA algo-
rithm. The SFC acceptance rate comparison of four algorithms
is shown in Fig. 10. The SFC acceptance rate of the EP-SP
algorithm exceeds 90% in various topologies and can approach
100% when sufficient resources are available. This is because
the EP-SP algorithm can immediately retrieve the resource
situation and select nodes in the topology for each VNF to
deploy. Therefore, as long as all nodes have enough resources,
SFC can be effectively deployed and maintained a high SFC
acceptance rate. In contrast, the SFC acceptance rate of PPDM
can approach or even surpass that of EP-SP algorithm in the
same simulation environment, reaching over 90%. EP-DQN
algorithm and EP-SP algorithm, learn SFC deployment strate-
gies in a completely transparent network. However, EP-DQN
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Fig. 7. Learning curves of different learning rates.
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Fig. 8. Resources utilization and delay optimization trad-off.
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Fig. 9. Comparison of SFC acceptance rate and end-to-end delay with different K.

still cannot achieve a higher SFC acceptance rate even if it can
find the best strategy in a fully exposed topology, due to the
lack of acceptance rate optimization process (i.e., Algorithm
1). Consequently, its acceptance rate and can only reach about
53-78%, which is significantly lower than EP-SP algorithm
and PPDM. As described in Section V-B, the CG-BSFC algo-
rithm seeks the best strategy for ultimate deployment in order
to maintain privacy. The SFC acceptance rate cannot achieve a
high result since this algorithm selects the best strategy among
permutations and combinations, making it impossible to know
if the chosen node will have sufficient resources for VNF at the
next instant. The simulation results demonstrate that the SFC
acceptance rate of the CG-BSFC algorithm can exceed 70%.
In addition, as the topology scale increases, the CG-BSFC
algorithm must generate more schemes in advance, which is

inapplicable when facing a large number of continuous tasks.
While the DQN-based method solves this issue essentially, it
is more suited for large-scale state and action space tasks.

4) SFC End-to-end Delay: Then, we compare the SFC end-
to-end delay of four algorithms, as shown in Fig. 11. EP-
SP algorithm can guarantee the minimum end-to-end delay
since it is an idealized algorithm. The PPDM has a 15-19ms
greater end-to-end delay than the EP-SP algorithm, which is
considered the near-optimal result. However, compared with
the CG-BSFC algorithm, the end-to-end delay of PPDM is re-
duced by 7-15ms, and the delay decreases with the increase of
the topology scale. Moreover, the EP-DQN algorithm, which
also utilizes the DQN method, achieves the same delay level
as PPDM. In other words, PPDM utilizes resource prediction
and binary response to conceal network resource information
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without significantly impacting the end-to-end delay of the
SFC. The end-to-end delay of PPDM is the same as that of
the EP-DQN algorithm, meanwhile, protecting the resource
privacy information. Although the global view observed by
MDC of EP-DQN algorithm and DQN-based PPDM is not
the same (i.e., transparent resources information and global
SIRM). However, in the learning process, the objective of both
approaches is to find a solution with lower delay and higher
resource utilization, i.e., higher cumulative rewards. Therefore,
even if the state of the input neural network is different, the
delay of the two algorithms is similar.

5) Resource utilization: In this paper, the average resource
utilization of the four deployed algorithms is also compared,
as shown in Fig. 12. The EP-SP algorithm tends to select
the nodes with minimum link delay and higher resource
utilization for the deployment of SFC in a complete view of
the resource and topology that exposes privacy. This makes
it an idealized algorithm that exhibits excellent advantages in
resource utilization. Similarly, compared to PPDM, the EP-
DQN algorithm can also accurately find the node to match
VNF’s required resources by observing the complete view
of the network, hence guaranteeing more efficient resource
utilization than PPDM. For the CG-BSFC algorithm, a pre-
allocation plan is made before VNF selects nodes. The overall
controller also tends to select nodes with higher resource
utilization when generating the pre-allocation plan. While
PPDM tends to find nodes with larger resources to ensure
the acceptance rate of deployment. Therefore, it offers no
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significant advantage in resource utilization. However, as the
topology scale increases, the resource utilization of the four
algorithms gradually approaches. In other words, for a large-
scale network environment like IIoT, the resource utilization
of the four algorithms will be close. Therefore, this utilization
of resources is also acceptable for PPDM.

6) Running time: The average running time for SFCs across
all algorithms is shown in Fig. 13. It can be seen that
the deployment time of the EP-SP, EP-DQN, and CG-BSFC
algorithms is relatively balanced across different topologies
based on the average execution time of more than 3000+
deployed SFCs. However, PPDM must predict node resources
and respond before deployment, so when the topology scale
increases, the algorithm’s complexity will be relatively high,
resulting in no running time advantage for SFCs deployment.
In our simulation, PPDM requires between 26 and 45 seconds
to converge at 2000 episodes of training, and the converged
model will be directly applied to the online SFCs deployment
without additional training, which will drastically reduce the
deployment time. Since the single SFC deployment time is
still at the millisecond level, it still considers acceptable in
the IIoT environment.

D. Discussion

To verify the privacy-preserving performance, we com-
pare both the privacy protection and non-privacy protection
methods. Simulation results verify that the proposed PPDM
approach achieves competitive performance compared with
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non-privacy protection methods, i.e., EP-SP and EP-DQN
algorithms, which use a completely transparent network for
SFCs deployment. Furthermore, compared to the privacy-
preserving algorithms, i.e., the CG-BSFC approach which
hides resource information of each domain based on the
column generation method, our approach demonstrates more
promising performance while retaining the ability to protect
privacy.

However, the current method still has some disadvantages
that need further research, for example, we have tried to
consider more realistic IIoT use cases by considering the real-
world topology and traffic of IIoT, but due to the lack of a
specialized dataset designed for cross-domain deployment of
IIoT, we still use existing distributed topologies for custom
design. When applied to real IIoT networks in the future,
the delay-constrained SFC deployment optimization is more
convincing than pure latency reduction, and SFC deployment
with both hardware-based NF and VNF needs to be considered
as well since not all NFs in IIoT can be virtualized.

VI. CONCLUSION

This paper investigates a privacy-preserving deployment
mechanism (PPDM) for SFCs across multiple domains, based
on strict network topology and network resource information
protection. Specifically, the deployment of SFCs across multi-
ple domains has been considered a distributed problem man-
aged by the MDC and presented as a hierarchical structure.
First, MDC sends the received service requests to each domain
controlled by IDC, each node returns a binary response to IDC
indicating whether the nodes can deploy the current VNFs.
Second, IDC predicts the virtual node’s resources based on
the response and matches the nodes with sufficient resource
capacity to participate in the current VNF deployment and con-
struct the SIRM. Then, the DQN-based CDDA algorithm uses
the SIRM as input to learn the near-optimal SFCs deployment
strategy. Finally, MDC distributes the strategy to each domain,
and IDCs implement the specific cross-domain deployment
and traffic scheduling. Simulation results demonstrate that
the proposed PPDM achieves considerable performance both
in privacy protection and SFCs deployment. The proposed
method has promising application prospects in multi-domain
IIoT and privacy-preserving assurance scenarios. Further work
is in progress to explore the collective reinforcement learning
(CRL)-based deployment method in multiple domains sce-
nario.
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