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A B S T R A C T   

The nontuberculous mycobacterial pulmonary disease (NTM-PD) caused by Mycobacterium species has increased 
in prevalence all over the world. The distributions of NTM-PD are possibly determined by the westerly wind 
traveling at high altitudes over East Asia. However, the long-range transport of Mycobacterium species has not 
been demonstrated by analyzing the bacterial communities in aerosols such as desert mineral particles and 
anthropogenic pollutants transported by the westerly wind. Here, airborne bacterial compositions were inves-
tigated including Mycobacterium species in high-elevation aerosols, which were captured in the snow cover at 
2,450 m altitude on Mt. Tateyama. This was further compared to the ground-level or high-altitude aerosols 
collected at six sampling sites distributed from Asian-dust source region (Tsogt-Ovoo) to downwind areas in East 
Asia (Asian continental cities; Erenhot, Beijing, Yongin, Japanese cities; Yonago, Suzu, Noto Peninsula). The cell 
concentrations and taxonomic diversities of airborne bacteria decreased from the Asian continent to the Japan 
area. Terrestrial bacterial populations belonging to Firmicutes and Actinobacteria showed higher relative 
abundance at high-elevation and Japanese cities. Additionally, Mycobacterium species captured in the snow cover 
on Mt. Tateyama increased in relative abundance in correspondence to the increase of black carbon concen-
trations. The relative abundance of Mycobacterium sequences was higher in the aerosol samples of Asian conti-
nental cities and Japanese cities than in the desert area. Presumably, anthropogenic pollution over East Asia 
carries potential Mycobacterium species, which induce NTM-PD, thereby impacting upon the public health.   

1. Introduction 

Nontuberculous mycobacterial pulmonary disease (NTM-PD) has 
increased incidence globally and is addressed as a critical public health 
issue (Adjemian et al. 2012; Thomson 2010; Prevots and Marras 2015; 
Thomson et al. 2017). The recent epidemiologic investigation estimated 
the prevalence of NTM-PD as a chronic infection, which was more 
prevalent than tuberculosis disease (Raju et al. 2016). In particular, the 

incidence rates of NTM-PD in Japan were observed to be at a high level 
among the industrialized countries (Namkoong et al. 2016), thereby 
suggesting that Asian regions are particularly susceptible to NTM-PD 
(Koh et al. 2006; Lai et al. 2010; Morimoto et al. 2014). Non-
tuberculous mycobacteria are normal bacterial inhabitants in the envi-
ronment and could cause aerosol infections occasionally in the living 
environments of human (Nishiuchi et al. 2017). The most frequent eti-
ology of NTM-PD is known to be M. avium complex (MAC), which 
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predominantly consists of M. avium and M. intracellulare (Griffith et al. 
2007; Kasperbauer and Daley 2008). The MAC pulmonary disease 
caused by M. avium exhibited a higher ratio of occurrence in the 
northern and eastern parts of Japan, whereas that of M. intracellulare 
appeared at a higher ratio in the southern and western parts of Japan 
(Kasperbauer and Daley 2008). Additionally, M. intracellulare were the 
predominant causative agents of NTM-PD in the Chinese continents 
(Griffith et al. 2007). 

In East Asia, natural desert dust and anthropogenic pollution carry 
mineral particles and black carbons as well as microorganisms from the 
Asian continent to the downwind region (Iwasaka et al. 1983; Huang 
et al. 2015a,b; Šantl-Temkiv et al. 2021). In Japan, Asian dust events 
come to the southern and western parts of Japan more frequently than 
the northern and eastern parts of Japan (Yamaguchi and Takemura 
2011; Huang et al. 2015a). The NTM-PD caused by Mycobacterium 
populations is known to spread via expose to environmental terrestrials 
(Fujita et al. 2013; Hamada et al. 2016). Accordingly, there is a hy-
pothesis that M. intracellulare was dispersed to the southern and western 
parts of Japan by Asian dust events (Morimoto et al. 2014). Indeed, in 
the Japanese southern and western parts, airborne microbial abun-
dances increase in response to atmospheric depressions, which travel 
from the Chinese continent (Murata and Zhang 2016). The microbial 
compositions in the atmosphere also vary significantly in correspon-
dence to Asian dust events in the downwind environments (the Noto 
Peninsula in Japan; Maki et al. 2010, 2013, the North American 
mountains in USA; Smith et al. 2012). However, the atmospheric 
dispersion of Mycobacterium species by Asian dust events has not been 
demonstrated by analyzing the bacterial communities in long-range 
transported aerosols. 

For investigating the airborne bacterial communities, including 
nontuberculous mycobacteria transported from the Asian continent to 
Japan, sampling the snow cover in Japan, such as that on Mt. Tateyama 
(3,015 m above sea level) is suitable, because the aerosols carried by 
westerly winds are captured by heavy snowfall and deposited as snow 
cover in Japan. The snowfall sometimes includes natural desert dust and 
anthropogenic pollution from the Asian continent and forms dark- 
colored (dirty) layers of snow cover. The snow cover on Mt. Tateyama 
at depths ranging from 6 to 10 m in the spring generally remains frozen 
until early April (Osada et al. 2004; Watanabe et al. 2011). Some re-
searchers have investigated the microbial compositions in the aerosols 
captured in such dirty layers to identify the airborne microorganisms 
associated with the natural desert dust and anthropogenic pollution 
transported from the Asian continent (Maki et al. 2011, 2018; Tanaka 
et al. 2011). 

In this study, for investigating the airborne bacterial communities 
dispersed over East Asia, we collected aerosol samples at the seven 
sampling sites which were located from Asian-dust sources (natural 
desert dust and anthropogenic pollution) to the downwind areas. At the 
other sampling site at Mt. Tateyama in downwind area, snow samples 
were collected from snow cover which sequentially captured the aero-
sols transported from the Asian continent. Microbial densities in the 
samples were counted using the fluorescent microscopic observation, 
followed by the examination of bacterial taxonomic structures using the 
DNA-amplicon metagenome. Finally, the relative abundances of bacte-
rial populations including Mycobacterium species were compared among 
the sampling sites to discuss the potential dispersion of NTM-PD via 
Asian dust. 

2. Materials and methods 

2.1. Sampling 

Sample collection for Asian-natural dust and anthropogenic pollut-
ants transported by westerly winds was performed through aerosol 
sampling at seven sites over East Asia and the snow sampling at the other 
site of Mt. Tateyama in Japan. The seven sites over East Asia covered 

Asian desert dust sources (Tsogt-Ovoo in the Gob Desert of Mongolia), 
anthropogenic-pollutant sources (Erenhot and Beijing in China), and 
dust deposition area (Yongin in Korea, Yonago, Suzu and the Noto 
Peninsula in Japan), while the snow samples represented aerosols that 
were sequentially transported from the Asian continent to Mt. 
Tateyama. 

Aerosol samples were collected on the Asian desert ground surfaces 
(Tsogt-Ovoo; 44.23◦ N, 105.17◦ E: 2 m height) and on the buildings of 
Asian continental inland cities (Erenhot; 43.67◦ N, 111.95◦ E: 5 m 
height, Beijing; 39.98◦ N, 116.38◦ E: 20 m height), Asian continental 
coastal cities (Yongin in Korea peninsula; 37.20◦ N, 127.16 ◦E: 20 m 
height) and Japanese cities (Yonago; 35.43◦ N, 133.33◦ E: 20 m height, 
Suzu; 37.45◦ N, 137.36◦ E: 15 m height) (Fig. 1). Additionally, aerosol 
samples at the heights ranging from 2,000 m to 2,500 m over Noto 
Peninsula of Japan (from Uchinada [36.67◦ N, 136.64◦ E] to Hakui 
[36.92◦ N, 136.76◦ E]) were also obtained using helicopter sampling 
procedure (Maki et al. 2017). For sampling, sterilized filter folders with 
a polycarbonate filters (0.22 µm pore size; Whatman, Tokyo, Japan) 
were attached to one side of air tubes, which were placed vertically at 
the sampling site or attached to helicopter windows. After connecting 
the other side of the air tubes to an air pump (MAS-1, AS-ONE, Osaka, 
Japan), aerosols were collected through the polycarbonate filter for 
sampling periods of 1.0 – 96 h at heights of 2 and 20 m and 0.5–1.0 h at 
the higher altitudes, with an airflow rates of 5 L min− 1. Finally, a total of 
38, 17, 10, 41, 10, 53, and 17 samples was collected from Tsogt-Ovoo, 
Erenhot, Beijing, Yongin, Suzu, Yonago, and Noto peninsula, respec-
tively (Table 1, Table S1). 

The snow samples were collected from the snow cover at Murodo- 
daira (36.57◦ N, 137.60◦ E; 2,450 m) on Mt. Tateyama on April 20, 
2013 (Fig. 1). First, snow wall was formed in the snow pit, which was 
dug from the top of the snow cover to the ground’s surface (743 cm 
vertical extent), and then, 5 mL snow samples were collected from each 
3 cm layer of the snow wall at “non-dust season layers” (at heights from 
164 to 200 cm) and “dust season layers” (at heights from 560 to 743 cm). 
The dirty layers found in the snow wall included high concentrations of 
Ca, which is a tracer of mineral dusts from the Asian deserts (Suzuki and 
Tsunogai 1993). The deserts dust events forming four dirty layers have 
been confirmed using the depolarization rates of lidar measurements 
(Fig. S1). Finally, a total of 70 snow samples (Table S2) were obtained 
and reserved at − 80 ◦C, prior to the experimental analyses. 

2.2. Environmental factors 

Backward trajectories were calculated using the National Oceanic 
and Atmospheric Administration Hybrid Single Particle Lagrangian In-
tegrated Trajectory model (https://www.arl.noaa.gov/HYSPLIT.php) to 
track the air mass transport pathways towards Mt. Tateyama with at an 
elevation of 2,500 m for the evaluation of long-range transport. The 
depolarization ratio measured by the lidar systems in nearby Toyama 
was used to identify the dust events from April to March 2013 
(https://www-lidar.nies.go.jp/) (Shimizu et al. 2016). The dust-event 
transport over East Asia during the winter and spring seasons in 2013 
was confirmed on the actual color images obtained using Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensors onboard the 
satellites (https://modis.gsfc.nasa.gov/about/). The weather data 
observed at the meteorological observatories were defined by the World 
Meteorological Organization (WMO) (https://public.wmo.int/en) and 
plotted on the MODIS images. 

For fluorescent observation of particles in snow samples, after the 
500 µL solution of 70 samples of Mt. Tateyama was fixed with 1 % 
paraformaldehyde solution, particles in the sample solutions were 
stained with 0.5 µg mL− 1 DAPI (4′,6-diamino-2-phenylindole) for 15 
min and filtered through a 0.22 µm pore size polycarbonate filter (Mil-
lipore, Tokyo, Japan) (Russell et al. 1974). In contrast, the filter- 
collecting aerosol samples of Tsogt-Ovoo, Erenhot, Beijing, Yongin, 
Suzu, Yonago and Noto peninsula, were also stained with adding 1 % 
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paraformaldehyde and 0.5 µg mL− 1 DAPI solution directly to the filters. 
After the filter was placed on top of a drop of low-fluorescence immer-
sion oil on a slide, another oil drop was used to cover along with a cover 
slide. Particles on the filter transects of slides were observed and counted 
on the filter transect using an epifluorescence microscope (Olympus, 
Tokyo, Japan) using a UV excitation system. The observed particles were 
classified into three categories: mineral particles with white auto-
fluorescence; microbial particles (bacteria and fungi) with DAPI-stained 
blue fluorescence; and black carbon with black color. The detection limit 
of aerosols was 1.32 × 102 particles/filter (from 1.50 × 102 particles/m3 

to 7.00 × 103 particles/m3), which allowed the detection of at least one 
particle under every view for an area of 1.0 mm × 1.0 mm. Microbial 
particles were counted in the samples collected at every sampling site, 
and mineral particles and black carbon were means in only the snow 
samples of Mt. Tateyama. 

2.3. High throughput sequencing of 16S rRNA genes in the samples 

The particles in 5 mL melted snow samples of Mt. Tateyama were 
centrifuged at 20,000 × g for 10 min and collected as pellets. In contrast, 
the particles in filter-collecting aerosol samples of Tsogt-Ovoo, Erenhot, 
Beijing, Yongin, Suzu, Yonago, and Noto peninsula were suspended in 3 
mL of sterile 0.6 % NaCl solution, before the particles were pelleted by 
centrifuging at 20,000 × g for 10 min. The pellets were resuspended into 
500 µL of sterile pure water and used for the extraction of genomic DNA 
(gDNA) using a phenol–chloroform method, which were combined with 
the microbial cell degradation by SDS, proteinase K, and lysozyme, as 
described previously (Maki et al. 2008). Fragments of 16S rRNA genes 
(approximately 290 bp) were amplified from the extracted gDNA using 

polymerase chain reaction (PCR) using universal bacterial primers 515F 
and 806R for the V4 region (Caporaso et al. 2011). The first PCR frag-
ments were amplified again using the second PCR primers, which tar-
geted the additional sequences of first PCR primers and included eight 
tag nucleotides designed for sample identification barcoding. Thermal 
cycling conditions were employed from the previous investigation (Maki 
et al. 2017). The PCR amplicons were used for high-throughput 
sequencing on a MiSeq Genome Sequencer (Illumina, CA, USA). The 
paired-end sequences with area length of 250 bp were grouped based on 
the tag sequences for each sample. At the PCR analysis steps, negative 
controls (sterile pure water and unused filter) contained no fragments of 
16S rRNA gene amplicons showing the absence of artificial 
contamination. 

The forward and reverse paired-end reads in the raw sequencing 
database were merged using R package DADA2 v1.14 (Callahan et al. 
2016). Primer sequences were removed using Cutadapt v2.8 (Martin 
2011). The reads were uniformly trimmed to 185 bp (forward) and 130 
bp (reverse) and then filtered by removing reads exceeding maximum 
expected errors (>2 for forward reads and > 5 for reverse reads) or reads 
containing ambiguity N symbol. The reads were used to train the error 
model and then dereplicated to acquire unique sequences, which were 
used to infer amplicon sequence variants (ASVs) with the trained error 
model. Greengenes release 13_8 (McDonald et al. 2012) was used for 
determining taxonomic compositions. All sequences have been depos-
ited in the DDBJ database (accession number of the submission is 
Tateyama; PRJEB24035, Tsogt-Ovoo; DRA005058, Erenhot and Beijing; 
PRJNA413598, Yongin and Yonago; PRJEB22232, Suzu; DRA014079, 
and Noto Peninsula; PRJEB17915). 

The Chao1 which is an indicator of bacterial diversity (alpha di-

Fig. 1. Map of the sampling sites of aerosol samples and snow samples around East Asia.  
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versity) was calculated as follows:.H′

= −
∑S

i=1Pi*log2Pi 

SChao1 = Sobs + n2
1/ 2n2 (1) 

where Sobs is the number of ASVs, n1 is the number of an individual 
ASV, and n2 is the number of an ASV containing two reads (Caporaso 
et al. 2010). 

Principal coordinate analysis (PCoA) with weighted UniFrac dis-
tances were used to cluster some samples according to the phylogenetic 
distances of their bacterial communities. UniFrac measured the differ-
ence of sequencing dataset between two samples depending on the 
branch lengths of two sequences in phylogenetic trees (Lozupone et al. 
2011). 

2.4. Data processing 

JMP version 16.1.0 (SAS Institute, Cary, NC, USA) was used for the 
statistical analyses of particle concentrations, the Chao 1, and the rela-
tive abundances of MiSeq sequencing data. The samples were separated 
into several groups depending on the collection sites or the survey series. 
Comparisons among several groups were performed using Steel-Dwass 
analysis with nonparametric statistics. Differences were considered 
significance in case of a p-value < 0.05. The relation between particle 
concentrations and bacterial relative abundances was analyzed statis-
tically using the Pearson correlation coefficient. 

3. Results 

3.1. Particle concentrations of microorganisms during Asian dust events 

The aerosol samples collected from the Asian desert area (Tsogt- 
Ovoo) and the Asian continental cities (Erenhot, Beijing, Yongin) 
exhibited higher ranges of particle concentrations than those collected 
from the Japanese cities (Suzu, Yonago) and at the high altitudes (Noto 
Peninsula) (Fig. 2a). However, there were a few statistical differences 
between the two types of two samples (Table S3). In every sampling site 
for aerosol sampling, the particle concentrations of minerals and 
airborne microorganisms increased by up to 100 folds during Asian dust 
events. The air-mass trajectories came frequently from the desert area to 
Erenhot and Beijing during the sampling periods (Fig. S2). Additionally 
the air masses over Asian desert and the continental cities sometimes 
moved to the downwind areas, such as Yongin, Suzu, Yonago, and Noto- 
Peninsula, indicating the several occurrences of Asian dust event during 
the sampling periods. 

The snow cover layers of Mt. Tateyama were mainly composed of 
compacted snow (rounded grains) which have not melted during winter, 
indicating that the aerosols in the snow samples would maintain the 
condition at deposition. The profiles of chemical compounds in the snow 
walls retained the variations corresponding to the snow layers (Fig. S3), 
implying that the snow layers would generally retain the original par-
ticles of the snowfall. The colored layers of the dust season layers 
(heights from 560 to 743 cm) in snow cover of Mt. Tateyama included 
relatively high concentrations of microbial particles as well as mineral 
particles in comparison to non-colored layers (Fig. 2b). On the contrary, 
black carbon increased in the lower parts (heights from 560 to 644 cm) 
of the dust season layers, which were accumulated during late winter. 
The colored layers at heights from 560 to 743 cm matched the occur-
rences of the natural desert dust and anthropogenic pollutants from 
March to April, which were detected by the Lidar data analysis (Fig. S1). 
Those from 560 to 644 cm indicated anthropogenic pollutants in 
February. The MODIS data indicated several series of Asian-dust events 
dispersed over East Asia during the winter and spring of 2013 (Fig. S4). 
The air-mass trajectories also supported that the aerosols captured in the 
colored layers were transported from the Asian continent to Japan 
(Fig. S5). 
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3.2. Analyses of bacterial community structures 

To analyze bacterial compositions in the snow and aerosol samples, 
we obtained a total of 19,225,745 merged paired-end sequences with a 
median length of 292 bp remaining. The sequences of 16S rRNA gene 
were divided into 3,423 phylotypes (sequences with > 97 % similarity). 
At the PCR analysis steps, the absence of 16S rRNA gene amplicons from 
negative controls (no template and template from unused filters) 
demonstrated the avoidance for artificial contamination during the 
experimental processes. Phylogenetic assignment of sequences resulted 
in an overall diversity comprising 42 phyla, (and candidate divisions), 
108 classes (and class-level candidate taxa), and 501 families (and 
family-level candidate taxa). Most of the phylotypes recovered from the 
aerosol and snow samples were related to the phyla Actinobacteria, 
Firmicutes, Bacteroidetes and Proteobacteria, which are typically well 
represented in 16S rRNA gene sequencing database generated from 
terrestrial, marine, freshwater, and phyllospheric environments (Fig. 3). 

Alpha diversities (Chao I) were higher in the samples of the conti-
nental inland cities (Erenhot, Beijing) than those of the Asian desert 
(Tsogt-Ovoo) and the downwind areas (Yongin, Yonago, Suzu, 
Tateyama, Noto Peninsula) (Fig. 4). In particular, the aerosol samples of 
Erenhot and Noto Peninsula exhibited significantly high and low of 
alpha diversities, responsibility, in comparison to the other samples 
excepting for Beijing (Steel-Dwass analysis: P < 0.05, Table S4). On the 
PCoA showing beta diversity, the samples collected at high altitudes of 
Mt. Tateyama and Noto Peninsula formed the cluster, which overlapped 
some area among those of Asian continent and Japan (Fig. 5). The 
aerosol samples of Asian desert (Tsogt-Ovoo) and the continental inland 

cities (Erenhot, Beijing) indicated the different cluster from the conti-
nental peninsula cities (Yongin) and the Japanese cities (Yonago, Suzu). 

The Firmicutes sequences tended to have increasing relative abun-
dances from the Asian-dust sources (Asian desert: Tsogt-Ovoo, the 
Continental inland cities: Erenhot, Beijing) to the downwind areas (the 
Japanese cities: Yonago, Suzu, the high elevation: Noto Peninsula, Mt. 
Tateyama) (Fig. 3). The Actinobacteria sequences presented greater 
relative abundances in the samples from Tsogt-Ovoo, Erenhot, and the 
Noto Peninsula than in those from other sites. The Actinobacteria se-
quences in the snow samples of Mt. Tateyama exhibited the increase 
trend of relative abundances at the lower parts of snow wall (heights 
from 560 to 644 cm and from 164 to 197 cm), which would be formed 
with anthropogenic pollutants during winter season (Fig. 6). 

3.3. Relative abundance of Mycobacterium species in the aerosol samples 

The sequences of the phyla Actinobacteria and the order Cor-
ynebacteriales exhibited the decrease trends of relative abundances in 
the samples from Asian desert to Japan (Fig. 7). The aerosol samples of 
Tsogt-Ovoo and Erenhot indicated significant higher relative abun-
dances of Actinobacteria sequences than those of other sampling sites 
(Steel-Dwass analysis: P < 0.05, Table S5). In contrast, the relative 
abundances of the Mycobacterium sequences in Corynebacteriales were 
higher in this order: high altitudes (Mt. Tateyama, Noto Peninsula) >
Asian continental cities (Erenhot, Beijing, Yongin) = Japanese cities 
(Suzu, Yonago) cities > Asian desert (Tsogt-Ovoo). The samples of 
Tsogt-Ovoo showed significant low relative abundances in comparison 
to those of Erenhot and Mt. Tateyama (Steel-Dwass analysis: P < 0.05, 

Fig. 2. (a) Concentrations of DAPI-stained 
microbial particles at the eight sampling 
sites in Asian desert (Tsogt-Ovoo), Asian 
continental cities (Erenhot, Beijing, Yongin), 
Japanese cities (Suzu, Yonago), and high 
elevation over Japan (Noto Peninsula). The 
error bars were obtained from the sample 
numbers which were collected at each sam-
pling site. (b) Vertical concentration profile 
of DAPI-stained particles, such as mineral 
particle (yellow triangles), microbial particle 
(blue circles), and black carbon (black 
squares), in snow samples collected from Mt. 
Tateyama.   
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Table S5). 
The Mycobacterium sequences in Actinobacteria were detected at a 

relative abundance of up to 6.5 % in the snow samples of Mt. Tateyama 
(The bottom graph in Fig. 6b). The snow samples collected from the 

dirty layers at lower parts of snow cover (heights from 560 to 644 cm) 
included higher rates of Mycobacterium sequences than the other parts of 
snow wall (heights from 164 to 197 cm and from 644 to 731 cm). The 
order Corynebacteriales containing Mycobacterium species also showed 

Fig. 3. The average relative abundance of bacterial compositions in the partial sequences obtained in the MiSeq sequencing database (approximately 250 bp). 
Obtained from the samples collected from eight sampling sites in Asian desert (Tsogt-Ovoo), Asian continental cities (Erenhot, Beijing, Yongin), Japanese cities (Suzu, 
Yonago), and high elevation over Japan (Mt. Tateyama, Noto Peninsula). 

Fig. 4. Bacterial diversity observed in the snow samples collected from the samples of eight sampling sites in Asian desert (Tsogt-Ovoo), Asian continental cities 
(Erenhot, Beijing, Yongin), Japanese cities (Suzu, Yonago), and high elevation over Japan (Mt. Tateyama, Noto Peninsula). The species were binned at the 97 % 
sequence similarity level. Asterisk indicates statistically difference from other samples (Steel-Dwass analysis; p < 0.05). 
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Fig. 5. Principal coordinates analysis of Bray Curtis distance matrix displaying phylogenetic clustering of the samples collected from eight sampling sites in Asian 
desert (Tsogt-Ovoo), Asian continental cities (Erenhot, Beijing, Yongin), Japanese cities (Suzu, Yonago), and high elevation over Japan (Mt. Tateyama, 
Noto Peninsula). 

Fig. 6. (a) Vertical profiles for bacterial compositions at the class level of the partial sequences obtained in the MiSeq sequencing database (approximately 250 bp) 
from snow samples collected from Murodo-daira, Mt. Tateyama, in April 2013. (b) Vertical profiles for relative abundance of bacterial sequences belonging to the 
phyla Actinobacteria, the order Corynebacteriales and the genus Mycobacterium in the MiSeq sequencing database. Circles of yellow, grey and orange indicate the 
layers formed at the desert dust days, the anthropogenic pollutant days, and the both desert dust and anthropogenic pollutant days, respectively. 
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the similar vertical patterns of relative abundances to the Mycobacterium 
sequences on the snow wall. The relative abundances of Mycobacterium 
and Corynebacteriales sequences in the snow samples of Mt. Tateyama 
exhibited positive relations to the black carbon densities in snow sam-
ples (Pearson correlation coefficient: P < 0.01) (Table 2). These mean 
that the bacterial cells of Mycobacterium and the relatives were captured 
with anthropogenic particles in snow cover during the winter and early- 
spring seasons (Fig. S1). Additionally, in the aerosol samples collected at 
Noto Peninsula using a helicopter, the Corynebacteriales sequences 
suddenly increased to up to 53 % and the Mycobacterium sequences also 
appeared at relative abundances of up to 0.5 % in early spring, when air 
masses came from the Asian continental cities (Fig. S2). 

4. Discussion 

At the sampling sites used in this survey, such as Tsogt-Ovoo, Eren-
hot, Beijing, Yongin, and Yonago, the aerosol concentrations of minerals 
and microorganisms reportedly increase by up to 100-folds during Asian 
dust events, potentially because of natural desert dust and/or anthro-
pogenic pollution (Tang et al. 2017; Chen et al. 2022; Maki et al. 2014, 
2016, 2019). The aerosols in the Asian desert (Tsogt-Ovoo) and the 
continental inland cities (Erenhot, Beijing) exhibited higher concentra-
tions than those in the Japanese cities (Suzu, Yonago) (Fig. 2a). The 
colored layers capturing dust particles in the snow cover of Mt. 
Tateyama included higher concentrations of microbial particles than 
non-colored layers (Fig. 2b). During hazy days in the Asian continent, 
the airborne microorganisms associated with mineral particles and 
pollutant particles increased in the atmosphere of Beijing (Wei et al. 

Fig. 7. Relative abundance of bacterial sequences 
belonging to the phyla Actinobacteria (a), the order 
Corynebacteriales (b), and the genus Mycobacterium 
(c) in the MiSeq sequencing database (approxi-
mately 250 bp) recovered from the samples 
collected from eight sampling sites in Asian desert 
(Tsogt-Ovoo), Asian continental cities (Erenhot, 
Beijing, Yongin), Japanese cities (Suzu, Yonago), 
and high elevation over Japan (Mt. Tateyama, Noto 
Peninsula). Red squares indicate the average rela-
tive abundance of each bacterial sequence. Asterisk 
indicates statistically difference from other samples 
(Steel-Dwass analysis; p < 0.05).   
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2016). The microbial load transported to downwind areas by Asian dust 
are known to increase airborne microbial densities suddenly at the 
ground levels (Hara and Zhang 2012; Maki et al. 2019) and at high al-
titudes (Maki et al. 2013, 2017) in the western parts of Japan. Previous 
studied have thus suggested that airborne microorganisms associated 
with natural desert dust and anthropogenic pollution are dispersed over 
long distances in East Asia. 

The bacterial communities in the snow and aerosol samples were 
composed of sequences of terrestrial, marine, freshwater, and phyllo-
spheric bacteria belonging to the phyla Actinobacteria, Firmicutes, 
Bacteroidetes and Proteobacteria (Fig. 3). These bacterial populations 
are reportedly dominant in the aerosol samples collected around East 
Asia during the hazy days caused by natural desert dust and/or 
anthropogenic pollution (e.g., Jeon at al. 2011; Maki et al. 2008, 2016, 
2019; Tanaka et al. 2011, Tang et al. 2016). The alpha diversities (Chao 
1) of airborne bacterial communities were the highest in the continental 
inland cities (Erenhot, Beijing) among the sampling sites in this study 
(Fig. 4). The combination of anthropogenic pollution with natural desert 
dust in the continental inland cities (Erenhot, Beijing) likely led to the 
high diversity of airborne bacteria, which originated from terrestrial and 
phyllospheric sources. On the pCoA graph, the airborne bacterial com-
positions were separated into two groups: the desert-dust (Tsogt-Ovoo) 
and anthropogenic pollutant (Erenhot, Beijing) sources and the down-
wind cities (Yongin, Yonago, Suzu) (Fig. 5). Comparatively, the samples 
collected at high altitudes (Mt. Tateyama, Noto-Peninsula) formed a 
cluster at the common parts between the above-mentioned two groups. 
The common bacterial communities were likely transported from the 
Asian continent to Japan at high altitudes. 

The phyla Firmicutes and Actinobacteria, which include dominant 
terrestrial bacteria, were commonly detected at every sampling site 
(Fig. 3). In particular, the Bacillus sequences in Firmicutes was dominant 
in the samples collected at high altitudes. The members of the genus 
Bacillus are known to form endospores against atmospheric stressors to 
survive during long-range transport by westerly winds (Nicholson et al. 
2000). Actinobacteria sequences also showed high relative abundances 
in the aerosol samples collected at Tsogt-Ovoo, Erenhot, and the Noto 
Peninsula (Fig. 7) and in the snow samples of Mt. Tateyama representing 
the Asian-dust particles (Fig. 6). Actinobacteria populations are domi-
nant in the airborne bacterial communities on hazy anthropogenic 
pollution-related days in Beijing (Cao et al. 2014). The terrestrial bac-
teria belonging to Actinobacteria, which form biofilms to resist envi-
ronmental stressors (Tong and Lighthart 1998), can be transported at 
high altitudes over Japan (Maki et al. 2017). The natural desert dust and 
anthropogenic pollution are thought to change the bacterial 

compositions at high altitudes ranging from 200 to 3,000 m over East 
Asia (Jeon et al. 2011; Maki et al. 2013). Natural desert dust mixed with 
anthropogenic pollution and ocean sea spray can reportedly travel 
across the Japan Sea (e.g., Leaitch et al. 2009). The westerly winds over 
East Asia can thus induce substantial variations in the bacterial com-
munities in the atmosphere of downwind areas under the influence of 
Asian dust events. In the regions affected by other kinds of desert dust, 
African dust (Prospero et al. 2005) and Australian dust (Close et al. 
1978; Lim et al. 2011) have been reported to carry airborne bacteria to 
the downwind areas in Europe and Oceania, respectively. 

The phyla Actinobacteria and the order Corynebacteriales had the 
highest relative abundances in the Asian desert samples (Tsogt-Ovoo). In 
contrast, the abundance of the genus Mycobacterium in Corynebacter-
iales was high in the samples collected at high altitudes (Mt. Tateyama, 
Noto Peninsula) and in Asian continental cities (Erenhot, Beijing, Yon-
gin) (Fig. 7). Additionally, the Mycobacterium sequences presented high 
abundances in the colored snow layers on Mt. Tateyama (Fig. 6), which 
formed when air masses came from continental industrial areas, such as 
Erenhot and Beijing (Fig. S5). Anthropogenic pollutants without natural 
dust are frequently transported from the Asian continent to downwind 
areas, such as Japan, from winter to early spring (Huang et al. 2015a) 
because the frozen desert surfaces prohibit the transport of desert dust 
from the Gobi and Taklamakan deserts (Abulaiti et al. 2014). Myco-
bacterium sequences were positively related to the black carbon densities 
(Table 2), suggesting that these bacteria are transported with anthro-
pogenic pollutants. The mineral particles and black carbon in the at-
mosphere are essential carriers of airborne microorganisms (Maki et al. 
2008; Xie et al. 2018). Indeed, under fluorescent microscopic observa-
tion, the aggregation of microorganisms with black carbon was observed 
in aerosol samples collected at high altitudes over the Noto Peninsula 
using a helicopter (Fig. S6). The shade of coarse particles, such as black 
carbon and mineral particles, can prevent coexisting or mixed bacterial 
cells from being exposed to environmental stressors, such as UV radia-
tion and desiccation (Tong and Lighthart 1998; Noda at al. 2022). 
Airborne Mycobacterium species are constantly suspended in the indus-
trialized areas of the Asian continent, and can be transported to high 
altitudes by Asian dust events. Mycobacterium populations attached to 
black carbon are thus expected to have high abundances at high 
altitudes. 

After deposition on ground-level environments in Japan, the relative 
abundances of Mycobacterium populations decreased (Fig. 7) because of 
atmospheric mixing with the local bacterial communities originating 
from Japanese seas and mountains. M. intracellular is known to cause 
NTM-PD mainly in the southern and western parts of Japan, where 
anthropogenic dust is frequently transported from the Asian continent 
(Morimoto et al. 2017). The epidemiological investigations demon-
strated that NTM-PD patients constantly appeared in Japan during the 
sampling periods from 2013 to 2018 (data not shown). The long-range 
transport of Mycobacterium populations likely to contributes to the po-
tential dispersion of NTM-PD around East Asia. 

There are some limitations of this study. First, the V3 region (ca. 450 
bp) of 16S rRNA gene used in this study did not have a sufficient length 
to determine the species level of Mycobacterium sequences. Different 
regions, including V3 and V4 should be considered for identifying 
Mycobacterium species in the future. Second, the metagenomic analyses 
using the gDNA extracted directly from samples provided only a DNA 
sequencing database without information on bacterial viabilities. 
Further studies should combine the analyses of bacterial isolates to 
identify Mycobacterium dispersion directly causing NTM-PD. Finally, the 
differences between the snow and aerosol samples are suspected of 
causing the artificial effects on bacterial variations. Psychrophile mi-
croorganisms are known to grow gradually below freezing tempera-
tures, and the melting process of snow samples may influence bacterial 
compositions (Srinivas et al. 2009). Moreover, microbial cells collected 
on the filter were likely damaged by desiccation, pump-absorption 
pressure, and sunlight irradiance during the sample filtering (Griffin 

Table 2 
Relatives of the bacterial relative abundances with particle concentrations in the 
snow samples of Mt. Tateyama.*.  

Bacterial categories Fluorescent particle concentrations 
Mineral particles Microbial particles Black carbon 

Halobacterota  − 0.04  0.03  − 0.15 
Cyanobacteria  − 0.09  − 0.14  0.19 
Gemmatimonadota  0.14  0.09  0.14 
Planctomycetota  − 0.01  − 0.02  0.05 
Acidobacteriota  0.04  − 0.13  0.15 
Actinobacteriota  − 0.35†† − 0.29†† 0.08 
Firmicutes  0.44†† 0.42†† − 0.04 
Bacteroidota  − 0.02  − 0.04  − 0.38††
Proteobacteria  − 0.40†† − 0.37†† 0.20 
Others  0.08  0.04  − 0.16 
Actinobacteriota  − 0.35†† − 0.29†† 0.08 
Actinobacteria  − 0.36†† − 0.30†† 0.10 
Corynebacteriales  0.06  − 0.09  0.24†
Mycobacterium  0.16  0.00  0.31††

Red cells indicate positive relations and blue cells indicate negative relations. 
* The marks †† and † indicate P < 0.01 and P < 0.05, respectively, for the 

Pearson correlation coefficient. 
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et al. 2011). However, these effects were expected to have minor con-
tributions because the growth of psychrophile microorganisms was not 
confirmed, and the abundances of stressors-resistant bacteria was 
detected at similar levels in both aerosol and snow samples. 

5. Conclusion 

This is the first report of a global survey investigating the airborne 
bacterial communities transported by Asian dust performed using at 
eight sampling sites around East Asia. The bacterial communities at high 
altitudes over Japan exhibited common taxonomic compositions as 
those in the aerosol samples of Asia dust sources and deposition regions. 
The terrestrial bacteria belonging to the phyla Firmicutes and Actino-
bacteria were transported predominantly by anthropogenic and natural- 
desert dust because of their resistance to atmospheric stressors. In 
particular, Mycobacterium species in Actinobacteria were abundant in 
the samples at high altitudes and associated with anthropogenic parti-
cles, suggesting that the NTM-PD potentially dispersed from industrial 
areas to Japan owing to anthropogenic pollution. These results support 
the hypothesis that Asian dust events increase the NTM-PD by 
M. intracellulare mainly in the southern and western parts of Japan. 
However, the Mycobacterium sequences in this study could not be 
identified clearly as species level. In the future, molecular biological 
techniques, such as quantitative PCR or fluorescent in situ hybridization 
targeting Mycobacterium species could allow the elucidation of the long- 
range transport processes of Mycobacterium species that cause NTM-PD 
over East Asia. Additionally, isolates of Mycobacterium species are 
needed for evaluating their potential for NTM-PD. 
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