Pu Wei, male, Ph.D., young researcher, and master's supervisor. He obtained his Ph.D. in Atmospheric Physics and Atmospheric Environment from the Schoolof Atmospheric Sciences at Lanzhou University in 2018. Subsequently, from October 2018 to February 2020, he conducted academic research at the Hong Kong Polytechnic University. He focuses on the study of cryosphere-climate interactions and has published multiple research findings as the first or corresponding author in journals such as Fundamental Research, GRL, ACP, JGR, and The Cryosphere. He has led projects funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation, among others, and has participated in several related research projects, with a total research funding of nearly 2.5 million RMB. His related work was selected as a cover paper for Fundamental Research.
Contact Information:
Email: puwei@lzu.edu.cn
Mailing Address: College of Atmospheric Sciences, Lanzhou University, Lanzhou, Gansu Province, Postal Code 730000
Research Interests:
Cryosphere and climate interaction research
Research on black carbon, dust, and their climatic effects on the cryosphere
Projects:
1. General Program of the National Natural Science Foundation of China,42375068, 2024-2027, PI
2. Open Fund of the State Key Laboratory of Cryospheric Science, SKLCS-OP-2021-05, 2022-2023, PI
3. The General Program of National Natural Science Foundation of China, 42075061,2021-2024, PI
4. The General Program ofChina Postdoctoral Science Foundation, 2020M673530,2020-2021, PI
5. 'Double First-Class' Initiative Special Fund - Team Building Fund - Research Start-up Fund, 2020-2025, PI
6. China Association for Science and Technology Excellent Young Foreign Exchange Program, 2021-2022, PI
7. Key Special Project of the Ministry of Science and Technology - Global Change and Its Response, 2019.11-2024.10, Participant
Publications: (* refers to corresponding author, + refers to co-first author)
1. Chen, Y., Xing, Y., Yan, S., Hou, Y., Li, X., Shi, T., Cui, J., Wu, D., Zhou, Y., Hao D., Pu, W*., Wang, X*. (2024). A comprehensive evaluation of black carbon in snow and its radiative forcing in CMIP5 and CMIP6 models based on global field observations. Journal of Geophysical Research: Atmospheres,129, e2023JD040665. https://doi.org/10.1029/2023JD040665
2. Yan, S., Chen, Y., Hou, Y., Liu K., Li, X., Xing, Y., Wu, D., Cui, J., Zhou, Y., Wang, X*., and Pu, W*. (2024). Which global reanalysis dataset represents better in snow cover on the Tibetan Plateau? The Cryosphere. (Accepted)
3. Li, X., Chen, Y., Yan, S., Zhang, H., Zhang, X., Niu, X., Wu, D., Zhou, Y., Wang, X., and Pu, W*. (2024). A comprehensive assessment of ions in snow and ice cores based on global observational data. Atmospheric Environment, 326, 120468. https://doi.org/10.1016/j.atmosenv.2024.120468
4. Xing, Y., Chen, Y., Yan, S., Cao, X., Zhou, Y., Zhang, X., Shi, T., Niu, X., Wu, D., Cui, J., Zhou, Y., Wang, X., and Pu, W*. (2024). Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains. Atmospheric Chemistry and Physics, 24, 5199-5219. https://doi.org/10.5194/egusphere-2023-1443
5. Wu, D., Yan, S., Zhang, J., Chen, Y., Xing, Y., Cui, J., Wang, X., Liu, J., and Pu, W*. (2024). Divergent features of the upper-tropospheric carbonaceous aerosol layer: Effects of atmospheric dynamics and pollution emissions in Asia, South America, and Africa. Environmental Research Letters, 19, 044005. https://doi.org/10.1088/1748-9326/ad2eef
6. Cui, J., Niu, X., Chen, Y., Xing, Y., Yan, S., Zhao, J., Chen, L., Xu, S., Wu, D., Shi, T., Wang, X., and Pu, W*. (2023). The spatio-temporal variability in the radiative forcing of light-absorbing particles in snow of 2003-2018 over the northern hemisphere from MODIS. Remote Sensing, 15, 636. https://doi.org/10.3390/rs15030636
7. Wu, D., Niu, X., Chen, Z., Chen, Y., Xing, Y., Cao, X., Liu, J., Wang, X., and Pu, W*. (2022). Causes and effects of the long-range dispersion of carbonaceous aerosols from the 2019-2020 Australian wildfires. Geophysical Research Letters, 49, e2022GL099840. https://doi.org/10.1029/2022GL099840
8. Wu, D., Shi, T., Niu, X., Chen, Z., Cui, J., Chen, Y., Zhang, X., Liu, J., Ji, M., Wang, X, and Pu, W*. (2022). Seasonal to sub-seasonal variations of the Asian Tropopause Aerosols Layer affected by the deep convection, surface pollutants and precipitation. Journal of Environmental Sciences, 114, 53-65. https://doi.org/10.1016/j.jes.2021.07.022
9. Pu, W., Cui, J., Wu, D., Shi, T., Chen, Y., Xing, Y., Zhou, Y., and Wang, X*. (2021). Unprecedented snow darkening and melting in New Zealand due to 2019–2020 Australian wildfires, Fundamental Research, 1, 224-231. https://doi.org/10.1016/j.fmre.2021.04.001 (Cover story)
10. Pu, W., Shi, T., Cui, J., Chen, Y., Zhou, Y., and Wang, X*. (2021). Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow, The Cryosphere, 15, 2255–2272. https://doi.org/10.5194/tc-15-2255-2021
11. Wu, D., Liu, J., Wang, T., Niu, X., Chen, Z., Wang, D., Zhang, X., Ji, M., Wang, X., and Pu, W*. (2021). Applying a dust index over North China and evaluating the contribution of potential factors to its distribution, Atmospheric Research, 254, 105515. https://doi.org/10.1016/j.atmosres.2021.105515
12. Cui, J., Shi, T., Zhou, Y., Wu, D., Wang, X., and Pu, W*. (2021). Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere, Atmospheric Chemistry and Physics, 21, 269-288. https://doi.org/10.5194/acp-21-269-2021
13. Pu, W+., Zou, Z+., Wang, W., Tanner, D., Wang, Z., and Wang, T*. (2020). Development of a chemical ionization mass spectrometry system for measurement of atmospheric OH radical, Atmos. Meas. Tech. Discuss., 2020, 1-35. https://doi.org/10.5194/amt-2020-252
14. Shi, T+., Pu, W+., Zhou, Y., Cui, J., Zhang, D., and Wang, X*. (2020). Albedo of Black Carbon‐Contaminated Snow Across Northwestern China and the Validation With Model Simulation, Journal of Geophysical Research: Atmospheres, 125, e2019JD032065. https://doi.org/10.1029/2019JD032065
15. Pu, W., Cui, J. C., Shi, T. L., Zhang, X. L., He, C. L., and Wang, X*. (2019). The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China, Atmospheric Chemistry and Physics, 19, 9949-9968. https://doi.org/10.5194/acp-19-9949-2019
16. Pu, W., Wang, X*., Wei, H., Zhou, Y., Shi, J., Hu, Z., Jin, H., and Chen, Q. (2017). Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China. The Cryosphere, 11(3), 1213-1233. https://doi.org/10.5194/tc-11-1213-2017
17. Pu, W., Wang, X*., Xueying, Z., Ren, Y., Shi, J.-S., Bi, J.-R., and Zhang, B.-D. (2015). Size distribution and optical properties of particulate matter (PM10) and black carbon (BC) during dust storms and local air pollution events across a Loess Plateau site. Aerosol and Air Quality Research, 15(6S), 2212-2224. https://doi.org/10.4209/aaqr.2015.02.0109
18. Wen, H., Zhou, Y., He, Y., Wang, T., Pu, W., Zhang, B., ... & Wang, X. (2024). Regional differences in molecular characteristics of atmospheric water-soluble organic carbon over northern China: Comparison of remote, rural, and urban environments. Science of The Total Environment, 174170. https://doi.org/10.1016/j.scitotenv.2024.174170
19. Mu, Z., Ma, Y., Wen, H., Zhang, C., Qi, Y., Zhang, D., Zhou, Y., Pu, W., and Wang, X. (2023). The Spatial Distribution of Dissolved Organic Matter and Its Molecular Fingerprints in Seasonal Snow Over Northeastern China. Journal of Geophysical Research: Atmospheres, 128(14), e2023JD039117. https://doi.org/10.1029/2023JD039117
20. Mu, Z., Niu, X., George, C., Wang, X., Huang, R., Ma, Y., Pu, W., Qi, Y., Fu, P., Deng, J., Ma, C., Hu, N., Li, X., and Wang, X. (2023). Accumulation of dissolved organic matter in the transition from fresh to aged seasonal snow in an industrial city in NE China. Science of the Total Environment, 857, 159337. https://doi.org/10.1016/j.scitotenv.2022.159337
21. Zheng, P., Chen, Y., Wang, Z., Liu, Y., Pu, W., Yu, C., ... and Wang, T. (2023). Molecular characterization of oxygenated organic molecules and their dominating roles in particle growth in Hong Kong. Environmental Science & Technology, 57(20), 7764-7776. https://doi.org/10.1021/acs.est.2c09252
22. Niu, X., Pu, W., Fu, P., Chen, Y., Xing, Y., Wu, D., ... & Wang, X. (2022). Fluorescence characteristics, absorption properties, and radiative effects of water-soluble organic carbon in seasonal snow across northeastern China. Atmospheric Chemistry and Physics, 22(21), 14075-14094. https://doi.org/10.5194/acp-22-14075-2022
23. Wang, X., Zhou, Y., Li, K., Pu, W., Wang, X., and George, C. (2022). Snowmelt leads to seasonal nitrous acid formation across northwestern China. Geophysical Research Letters, 49(18), e2022GL098035. https://doi.org/10.1029/2022GL098035
24. Shi, T., He, C., Zhang, D., Zhang, X., Niu, X., Xing, Y., Chen, Y., Cui, J., Pu, W., and Wang, X. (2022). Opposite effects of mineral dust nonsphericity and size on dust‐induced snow albedo reduction. Geophysical Research Letters, 49(12), e2022GL099031. https://doi.org/10.1029/2022GL099031
25. Shi, T., Cui, J., Wu, D., Xing, Y., Chen, Y., Zhou, Y., Pu, W., and Wang, X. (2022). Snow albedo reductions induced by the internal/external mixing of black carbon and mineral dust, and different snow grain shapes across northern China. Environmental Research, 208, 112670. https://doi.org/10.1016/j.envres.2021.112670
26. Zhou, Y., West, C. P., Hettiyadura, A. P., Pu, W., Shi, T., Niu, X., ... &Laskin, A. (2022). Molecular characterization of water-soluble Brown carbon chromophores in snowpack from northern Xinjiang, China. Environmental Science & Technology, 56(7), 4173-4186. https://pubs.acs.org/doi/10.1021/acs.est.1c07972
27. Shi, T., Chen, Y., Xing, Y., Niu, X., Wu, D., Cui, J., Zhou, Y., Pu, W., and Wang, X. (2022). Assessment of the combined radiative effects of black carbon in the atmosphere and snowpack in the Northern Hemisphere constrained by surface observations. Environmental Science: Atmospheres, 2(4), 702-713.
28. Chen, Y., Zheng, P., Wang, Z., Pu, W., Tan, Y., Yu, C., ... & Wang, T. (2021). Secondary formation and impacts of gaseous nitro-phenolic compounds in the continental outflow observed at a background site in south China. Environmental Science & Technology, 56(11), 6933-6943. https://doi.org/10.1021/acs.est.1c04596
29. Wang, Y., Fu, X., Wang, T., Ma, J., Gao, H., Wang, X., and Pu, W. (2023). Large contribution of nitrous acid to soil-emitted reactive oxidized nitrogen and its effect on air quality. Environmental Science & Technology, 57(9), 3516-3526. https://doi.org/10.1021/acs.est.2c07793
30. Shi, T., Cui, J., Chen, Y., Zhou, Y., Pu, W., Xu, X., Chen, Q., Zhang, X., and Wang, X. (2021). Enhanced light absorption and reduced snow albedo due to internally mixed mineral dust in grains of snow, Atmospheric Chemistry and Physics, 21, 6035-6051. https://doi.org/10.5194/acp-21-6035-2021
31. Chen, W., Wang, X., Cui, J., Cao, X., Pu, W., Zheng, X., Ran, H., and Ding, J. (2021). Radiative forcing of black carbon in seasonal snow of wintertime based on remote sensing over Xinjiang, China, Atmospheric Environment, 247, 118204. https://doi.org/10.1016/j.atmosenv.2021.118204
32. Zhou, Y., West, C. P., Hettiyadura, A. P., Niu, X., Wen, H., Cui, J., Shi, T., Pu, W., Wang, X., and Laskin, A. (2021). Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China. Atmospheric Chemistry and Physics, 21(11), 8531-8555. https://doi.org/10.5194/acp-21-8531-2021
33. Zhou, Y., Wen, H., Liu, J., Pu, W., Chen, Q., and Wang, X. (2019). The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China, The Cryosphere, 13, 157-175. https://doi.org/10.5194/tc-13-157-2019
34. Wang, X., Pu, W., Ren, Y., Zhang, X. L., Zhang, X. Y., Shi, J. S., Jin, H. C., Dai, M. K., and Chen, Q. L. (2017). Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey. Atmospheric Chemistry and Physics, 17(3), 2279-2296. https://doi.org/10.5194/acp-17-2279-2017
35. Wang, S., Zhao, W. X., Xu, X. Z., Fang, B., Zhang, Q. L., Qian, X. D., Zhang, W. J., Chen, W. D., Pu, W., and Wang, X. (2017). Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing. Atmospheric Environment, 169, 128-139. https://doi.org/10.1016/j.atmosenv.2017.09.016
36. Xu, X. Z., Zhao, W. X., Zhang, Q. L., Wang, S., Fang, B., Chen, W. D., Venables, D. S., Wang, X. F., Pu, W., Wang, X., Gao, X. M., and Zhang, W. J. (2016). Optical properties of atmospheric fine particles near Beijing during the HOPE-J(3)A campaign. Atmospheric Chemistry and Physics, 16(10), 6421-6439. https://doi.org/10.5194/acp-16-6421-2016
37. Wang, X., Pu, W., Zhang, X., Ren, Y., and Huang, J. (2015). Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China. Atmospheric Environment, 114, 57-65. https://doi.org/10.1016/j.atmosenv.2015.05.012
38. Wang, X., Pu, W., Shi, J. S., Bi, J. R., Zhou, T., Zhang, X. Y., and Ren, Y. (2015). A comparison of the physical and optical properties of anthropogenic air pollutants and mineral dust over Northwest China. Journal of Meteorological Research, 29(2), 180-200. https://doi.org/10.1007/s13351-015-4092-0